• Title/Summary/Keyword: moment of truncated multivariate normal

Search Result 2, Processing Time 0.009 seconds

trunmnt: An R package for calculating moments in a truncated multivariate normal distribution

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.673-679
    • /
    • 2021
  • The moment calculation in a truncated multivariate normal distribution is a long-standing problem in statistical computation. Recently, Kan and Robotti (2017) developed an algorithm able to calculate all orders of moment under different types of truncation. This result was implemented in an R package MomTrunc by Galarza et al. (2021); however, it is difficult to use the package in practical statistical problems because the computational burden increases exponentially as the order of the moment or the dimension of the random vector increases. Meanwhile, Lee (2021) presented an efficient numerical method in both accuracy and computational burden using Gauss-Hermit quadrature. This article introduces trunmnt implementation of Lee's work as an R package. The Package is believed to be useful for moment calculations in most practical statistical problems.

Moments calculation for truncated multivariate normal in nonlinear generalized mixed models

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.377-383
    • /
    • 2020
  • The likelihood-based inference in a nonlinear generalized mixed model often requires computing moments of truncated multivariate normal random variables. Many methods have been proposed for the computation using a recurrence relation or the moment generating function; however, these methods rely on high dimensional numerical integrations. The numerical method is known to be inefficient for high dimensional integral in accuracy. Besides the accuracy, the methods demand too much computing time to use them in practical analyses. In this note, a moment calculation method is proposed under an assumption of a certain covariance structure that occurred mostly in generalized mixed models. The method needs only low dimensional numerical integrations.