• 제목/요약/키워드: moment analysis

검색결과 3,518건 처리시간 0.037초

넓은 범위의 힘/모멘트비를 갖는 3분력 힘/모멘트 센서 설계 (Design of 3-component Force/Moment Sensor with Force/Moment Ratio of Wide Range)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.214-221
    • /
    • 2001
  • This paper describes the design of 3-component force/moment sensor with the force and moment ratio of wide range. It can measure the x-direction force Fx, y-direction force Fy and z-direction moment Mz simultaneously. In order to accurately measure forces and moment using 3-component force/moment sensor, it should get suitable force and moment ratio(the ratio of force Fx=200 N and moment Mz=20 Nm is ten to one), and small interference error. In this paper, in order to design the 3-component force/moment sensor with the force and moment ratio of wide range, the procedures are performed as follow : 1) the derivation of the equations to predict the bending strains on the surfaces of the plate-beams under the force or the moments, 2) the determination of the size of the sensing elements of the force/moment sensor by using the derived equations, 3) the Finite Element Method(FEM) analysis and the characteristic test for confirming the strains from the theory analysis, 4) the selection of the attachment locations of the strain gages of each sensor, 5) the analysis of the rated strain and the interference error at the attachment location of strain gages. It reveals that the rated strains calculated from the derived equations make a good agreement with the results from the Finite Element Method analysis and the characteristic test.

  • PDF

렌치 시스템을 이용한 이족보행 로봇의 안정도 해석 (Stability Analysis of a Biped Robot using Wrench System)

  • 임헌영;심재경;황규혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.648-651
    • /
    • 2004
  • Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.

  • PDF

정밀 공작기계용 리니어모터 모멘트의 해석 및 실험적 검증 (Analysis and Experimental Verification of Linear Motor Moment for Precision Machine Tools)

  • 조영택;조한욱;이승한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.884-885
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of pitching moment in permanent magnet linear synchronous motor (PMLSM) for precision machine tools. In this paper, we define force characteristics of the moment and the moment analysis by the finite element method. Manufacture experiment and we will compare the results of finite element analysis and experimental results.

  • PDF

철근콘크리트 연속보의 휨모멘트 재분배에 관한 해석적 연구 (Analytical Study on the Flexural Moment Redistribution of Continuous Reinforced Concrete Beams)

  • 천주현;성대정;이상철;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.385-388
    • /
    • 2006
  • The purpose of this study is to offer an appropriate method of the degree of the flexural moment redistribution for continuous reinforced concrete beams. Twenty-four two-span continuous beams were selected to determine the manner and degree of moment redistribution. The concept of ductility is linked to the moment redistribution capacity and, consequently, the safety of the structure. Knowledge of the plastic rotation capacity of plastic regions of the structure is important for a plastic analysis or a linear analysis with moment redistribution. A nonlinear finite element analysis program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used to evaluate the ultimate strength and degree of moment redistribution. The nonlinear material model for the reinforced concrete is composed of models for characterizing the behavior of the concrete, in addition to a model for characterizing the reinforcing bars.

  • PDF

Biomechanical Evaluation of Elbow Moment in Pitching Types according to the Throwing Speed: A Pilot Study

  • Lee, Chang-Hyung;Yang, Jin-Hwan;Lee, Seung-Hoo;Lee, Gyu-Chang;Park, Jong-Chul
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2020
  • Objective: The incidence rate of elbow ulnar collateral ligament injuries is dependent on the throwing speed or pitching type, especially in adolescent baseball players. However, mixed results have been reported due to a lack of controlled biomechanical analysis. Thus, the purpose of this study was to investigate the biomechanical analysis of the elbow in relation to throwing speed and pitching type. Method: Four overhead type high-school baseball players were recruited for this study. The participants were asked to throw balls with different types of pitch and speed. While the throwing speeds were measured, each pitching moment of the elbow was recorded. Descriptive statistics, frequency analysis, mean comparison analysis, and Pearson's correlation analysis were performed in order to examine differences in peak varus and valgus moment during pitching motion in the elbow in all throwing speed and pitching types. Results: There was no significant difference in physical characteristics, throwing speed, and momentum variability among all players. The mean varus moments were 44.38±1.55 Nm, 48.83±1.66 Nm, and 48.94±0.95 Nm, and the moment gaps between varus and valgus were 7.36±3.25 Nm, 7.44±2.02 Nm, and 7.36±2.62 Nm in fastball, curveball, and slider ball, respectively. The varus moment was higher in the curved and slider balls than in the fastballs, and there was no significant differences between the varus moments regarding the pitching type. However, the increase in valgus moment and decrease in moment gap according to throwing speed was significantly increased in the slider ball (r=0.718 and -0.591, respectively). Conclusion: The possibility of elbow injury caused by the valgus moment or moment gapincreases more rapidly in slider balls as the speed increases. Based on our results, appropriate pitching guidelines should be suggested to prevent ulnarligament injuries, especially in adolescent baseball players.

프리스트레스트 콘크리트 연속보의 극한모멘트계산을 위한 구조해석 (Structural Analysis of Prestressed Concrete Continuous Beams for Ultimate Moment Calcalation)

  • 이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1994
  • In structural analysis of prestressed concrete continuous flexural mambers, secondary effects produced by tendon forces should be reasonably estimated. The secondary moment at service load stags is normally used for ultimate required moment caculation in strength design. This concept has to be reviewed when precise analysis is performed considering construction step, time dependent properties of concrete and tendon. An ultimate moment computation proposed, concept and structural behavior. The previously proposed procedure by other researcher and the proposed procedure are compared and reviewed for the currently constructed precast prestressed concrete bridge.

  • PDF

FEMA P695를 이용한 국내 저층 철골 중간모멘트골조의 반응수정계수 제안 (Proposition of Response Modification Factor of Low-rise Steel Intermediate Moment Frame in Korea using FEMA P695)

  • 한아름;김태완;유은종
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2014
  • In current seismic design code, steel moment frames are classified into ordinary, intermediate, and special moment frames. In the case of special moment frames which have large R-factor, economic design is possible by reducing the design lateral force. However, there is difficulty for practical application due to constraints such as strong column-weak beam requirement. This study evaluated if steel intermediate moment frame could maintain enough seismic capacity when the R-factor is increased from 4.5 to 6. As for the analytical models, steel moment frames of 3 and 5 stories were categorized into four performance groups according to seismic design category. Seismic performances of the frames were evaluated through the procedure based on FEMA P695. FEMA P695 utilizes nonlinear static analysis(pushover analysis) and nonlinear dynamic analysis(incremental dynamic analysis, IDA). In order to reflect the characteristics of Korean steel moment frames on the analytical model, the beam-column connection was modeled as weak panel zone where the collapse of panel zone was indirectly considered by checking its ultimate rotational angle after an analysis is done. The analysis result showed that the performance criteria required by FEMA P695 was satisfied when R-factor increased in all the soil conditions except $S_E$.

비선형 해석에 의한 MRS 슬래브 단부 접합부의 모멘트 분포 연구 (Nonlinear Analysis for Negative Moment Distribution of MRS Slab End Joints)

  • 문정호;오영훈;임재형
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.177-184
    • /
    • 2011
  • 이 연구에서는 PC 구조의 단부를 연속으로 연결한 MRS(multi-ribbed moment resisting slab) 구조에 대한 해석 및 설계법을 제안하고자 하였다. MRS 구조에서는 더블티 부재가 역티보 위에서 부모멘트 철근에 의해서 연속으로 설계되므로, 부모멘트 철근이 좁은 지역에 밀집되는 문제가 발생할 수 있다. 따라서 선형 및 비선형 해석을 통하여 모멘트 분포 메커니즘을 분석하여, 적절한 설계법을 제시하였다. 또한 이 연구와 병행하여 실시한 실험 연구의 결과를 비선형상세 해석을 통하여 분석하였다. 그리고 단부구속효과 및 모멘트 재분배에 관한 연구를 위하여 비선형 골조 해석을 선택하여 변수별 연구를 수행하였다. 해석을 위한 재질 및 단면의 특성은 함께 진행된 실험 연구의 결과로부터 얻어졌으며, 비선형 골조 해석을 위한 소성힌지는 균열 모멘트, 공칭 모멘트, 부재 연성도 등의 값으로 모델링되었다. 선형 및 비선형 해석의 결과로부터 단부 회전 스프링과 부모멘트재분재를 통하여 MRS 구조의 단부 모멘트는 상당한 크기로 감소시킬 수 있음을 알 수 있었다.

할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배 (Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method)

  • 박홍근;김창수;엄태성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.221-224
    • /
    • 2008
  • 할선강성을 이용하여 모멘트저항골조의 모멘트재분배를 수행하는 선형해석법을 연구하였다. 제안된 방법에서는 모멘트재분배가 요구되는 부재의 소성힌지에 회전스프링을 모델링한 후, 이 스프링의 할선 강성을 조정하여 비탄성변형으로 인해 저감된 부재의 휨강성을 반영한다. 회전스프링의 할선강성을 조정하여 선형해석한 결과, 해당 부재와 전체 구조물에서 힘의 평형이 만족될 때까지 계산을 반복한다. 할선강성해석을 통해, 소성힌지의 비탄성변형에 의한 하중의 재분배가 고려될 수 있으며, 해당 소성힌지에서의 요구회전변형이 변형능력을 초과하지 않는지 비교함으로써 안전성을 평가할 수 있다. 검증을 위해, 제안된 방법은 기존의 연속보에 대한 실험연구와 비교되었으며, 기존건물의 평가에 적용되었다.

  • PDF

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.