• Title/Summary/Keyword: molten depth

Search Result 50, Processing Time 0.02 seconds

A Study on Horizontal Fillet Welding by Using Rotating Arc (I) - Relation Between Welding Parameters and Weld Bead Shape (회전아크를 이용한 수평필릿 용접에 관한 연구 (I) - 공정변수와 용접비드형상의 관계 -)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.40-45
    • /
    • 2003
  • The high-speed rotating arc process forms a flat bead surface with decreased penetration depth because the molten droplets are deflected by centrifugal force. Therefore the rotating arc welding for horizontal fillet welding increases the leg length with the increase of rotation frequency and prevents the deflection of weld bead and overlap. In this study, the relationship between the welding parameters and the weld bead shape - leg length and undercut - are investigated experimentally. Consequently, the weld quality could be improved by rotating arc welding, and sound weld bead was achieved when applied to horizontal fillet welding with 4mm gap by avoiding the undercut which is inevitable for the conventional GMA welding methods.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt (코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.248-253
    • /
    • 2013
  • To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

The Coloring Effect of Glasses by Ag+ Ion Exchange (Ag+ 이온교환에 따른 유리의 착색 효과)

  • 이용근;이동인;윤종석;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.499-504
    • /
    • 1989
  • Coloring effect, mechanical properties resulting from silver ions exchange of glasses immersed into the mixed molten salt of KNO3 and AgNO3 were investigated in this study. Ion exchange coloring of glasses made it possible to obtain glasses with a range from yellow to yellowish-brown, and spectral transmittance was investigated. The amount of ion exchange and peneration depth increased with treatment temperature and time. The activation energy decreased with mole fraction of AgNO3. It can be seem that the bending strength of ion exchanged glasses were 3~4 times higher than the parent glass and Ag+ colloids prevented from increasing surface microhardness.

  • PDF

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

A Study on the Design Efficiency of Mold Design Using Design Automation Method in the CAD System (CAD 시스템에서의 설계 자동화기법을 활용한 금형 설계 효율화 방안 연구)

  • Kim, Dae-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.824-829
    • /
    • 2018
  • Molding is the root industry of the manufacturing as a means to mass-produce developed prototypes. Molds are typically divided into injection molds and press mold industries. Injection molds produce the products by injection of molten plastic into a mold, and press molds are molded and bended plate. The ejection system, such as eject pins, is used to separate the manufactured products from the mold, which involves a number of hole operations. Location, diameter and depth of holes are often tabulated and managed collectively when designing 2D drawings. The design efficiency was realized by applying CATIA Automation to the 3D model and bringing in the data of the holes in the Excel data.

Investigation of Degradation Mechanism of High Alumina Refractory in a Coal Gasifier (석탄 가스화기에서의 고알루미나 내화물의 손상 기구 규명)

  • Kim, Yuna;Lee, Jae Goo;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.638-645
    • /
    • 2009
  • High alumina refractory used in a coal gasifier was analyzed and the degradation mechanism by molten slag was investigated. The depth of refractory severely damaged by slag varied between 12~40 mm, including the adhered slag layer. The sample also showed the cracks formed in parallel to the slag/refractory interface. The degree of degradation varied with the micro-structures in the refractory. Fused alumina grains showed the uneven boundary and pore formation just along the edges, while the tablet alumina showed the slag penetrated between sintered alumina around which the formation of Al-Fe phase was observed. Calcium aluminate cements were not observed at the high temperature zone near the slag/refractory interface, probably due to dissolution into molten slag. Around large grains of alumina, rod shape alumina, which appeared to be recrystallized during cooling, were observed, and large pores were also formed around those grains. Therefore, in high alumina refractories, hot molten slag dissolves the bonding phase and rod-shape alumina phase is recrystallized upon cooling. During this process, cracks are developed due to structural change, and the degradation occurs by physical causes such as structural spalling.

A Study on Remote CO2 Laser Welding for the Development of Automobive Parts (차체부품 개발을 위한 원격 CO2 레이저 용접에 관한 연구)

  • Song, Mun-Jong;Lee, Gyu-Hyun;Lee, Mun-Yong;Kim, Sok-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.75-79
    • /
    • 2010
  • The Remote welding system(RWS) using $CO_2$ laser equipment has focusable distance of laser beam longer than 800 mm from workpiece and can deflect the laser beam by the scanner mirrors very rapidly. In the case of normal welding system based on robot, there is a limit to move the shortest path in short time and this causes interference between robot and workpiece. On the other hand, RWS is the optimized equipment to get big merits with advanced sequence of welding and short cycle time. However, there is still a pending task such as the control of plasma in the welding process of thick sheets therefore, it requires high power laser beam because of the absence of assist gas equipment in itself. In this study, high-tensile steel plates were overlap welded with $CO_2$ RWS for the production of car body and the influence of penetration depth according to the existence of assist gas was analyzed. Excellent tensile strength with enough width of molten zone independent to penetration depth was observed under welding condition with 3.6 kW laser power and 2.8 m/min welding speed without assist gas. Finally, the proto-type automotive parts were produced by applying the deduced optimal welding condition.

Analysis of Fuel/Coolant Mixing in Steam Explosion (증기 폭발시 용융 핵연료/냉각수 혼합에 대한 해석)

  • Lee, Tae-Ho;Jo, Seong-Youn;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.215-221
    • /
    • 1993
  • A required initial condition for a steam explosion to occur following core meltdown accidents of a nuclear power plant is the formation of a coarse mixture of molten fuel and water. The extent of a premixing is the measure of efficiency of steam explosion that may follow. A simple one-dimensional, transient model and the flooding criteria have been applied to evaluate the fuel/coolant mixing limit. Also, both instant breakup and dynamic breakup models for the mixing process have been separately used here and compared each other. The results indicate that fuel temperature, ambient pressure, mixing diameter, water depth, and pouring diameter are the important parameters affecting the mixing behavior.

  • PDF

Effect of Be Mixing Ratio on the Characteristics of TIG Welding with High Current and High Speed (대전류 고속 TIG 용접 특성에 미치는 He 혼합비의 영향)

  • Oh Dong-Soo;Kim Yeong-Sik;Cho Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.54-60
    • /
    • 2005
  • Tungsten Inert Gas(TIG) welding is today one of the most popular arc welding process because of its high quality welds and low equipment costs. Even if welding productivity increases with welding speed and current, this strategy is limited by the appearance of defects such as undercut and humping bead due to the depressed molten metal. The purpose of this study investigates the effect of He mixing ratio on the characteristics with high current and speed in TIG welding. The conclusions obtained permit to explain the arc start characteristics quantitatively and the maximum welding speed on stable bead formation with He mixing ratio for high current and speed TIG welding observed in experiments. Also through the relation of the maximum arc pressure and surface depression depth at high current and speed TIG welding, it made clear the mechanism of unstable bead formation.

Characterization and Bacteicidal Effect of Na_2O-Al_2O_3-SiO_2$ Glass System by $Na^+$$\longleftrightarrow$$Ag^+$ Ion Exchange ($Na^+$$\longleftrightarrow$$Ag^+$ 이온교환에 따른 Na_2O-Al_2O_3-SiO_2$ 계 유리의 특성 및 살균효과)

  • 이광희;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 1996
  • Glasses of Na2O-Al2O3-SiO2 system were prepared and ion-exchange characteristics change of properties and bactericidal effects by Na+↔Ag+ ion exchange were studied. Parent glasses with three compositions of varying Na2O in the 20~30 wt% were ion-exchanged in the molten salt of 2 mol% AgNO3+98 mol% NaNO3 at 320~36$0^{\circ}C$ for 15~16min. Amount of ion exchange and penetration depth of Ag+ ion increased with Na2O content in the parent glass ion exchange temperature and time. After ion exchange densities and Vickers hardness of the glasses increased and the glasses showed yellow-brown color and as amount of ion exchange increased the color turned deep because partial reduction and agglomeration of Ag+ into Ag0 results in absorption of visible light. After ion exchange chemical durability of the glass to wter was enhanced compara-bly that weight loss and change of surface of the glass were not found for the leaching test in 5$0^{\circ}C$ K.I water for 240hrs. Bactericidal effect of ion exchanged glass on Staphylococcus aureus and E. coli was determined by microorganism test and bactericidal effect increased with amount of ion exchange and incubation time.

  • PDF