• Title/Summary/Keyword: molecular structural property

Search Result 47, Processing Time 0.024 seconds

Prediction of retention of uncharged solutes in nanofiltration by means of molecular descriptors

  • Nowaczyk, Alicja;Nowaczyk, Jacek;Koter, Stanislaw
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.181-192
    • /
    • 2010
  • A linear quantitative structure-property relationship (QSPR) model is presented for the prediction of rejection in permeation through membrane. The model was produced by using the multiple linear regression (MLR) technique on the database consisting of retention data of 25 pesticides in 4 different membrane separation experiments. Among the 3224 different physicochemical, topological and structural descriptors that were considered as inputs to the model only 50 were selected using several criteria of elimination. The physical meaning of chosen descriptor is discussed in detail. The accuracy of the proposed MLR models is illustrated using the following evaluation techniques: leave-one-out cross validation procedure, leave-many-out cross validation procedure and Y-randomization.

Finite Element Modeling of a Carbon Nanotube Actuator (탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법)

  • 김정택;현석정;김철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Properties of Chestnut Starch and It's Gel (밤 전분 및 전분겔의 성질에 관한 연구)

  • Choo, Nan-Young;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1017-1027
    • /
    • 1995
  • This study was attempted to investigate physicochemical properties, molecular structural properties of native and acid-treated chestnut starch and chestnut starch gel. The amylose content was 18.9% and X-ray diffraction pattern showed Cb type. Swelling power was increased abruptly in the range of $65^{\circ}C{\sim}75^{\circ}C$ but increased slowly after that and solubility was increased abruptly until $70^{\circ}C$ but increased slowly after that. In amylograms which have different heating temperatures, cooling viscosity at $50^{\circ}C$ was reduced as heating temperature was increased. In molecular structural properties of amylose, ${\lambda}_{max}$ was 640 nm, ${\beta}-amylolysis$ limit was 84.2% and the degree of polymerization was 951 and in those of amylopectin, ${\lambda}_{max}$ was 570 nm, ${\beta}-amylolysis$ limit was 58.2%, the degree of polymerization was 1371 and average chain length was 22.6. In gel chromatography elution profiles of starch and amylose, 4.0% and 11.5% of low molecular weight-molecules($<5{\times}10^5$) were leached out. In gel chromatography elution profiles of soluble starch, the higher heating temperature was, the more high molecular weight-starches were leached out. The elution profiles after debranching amylopectin with pullulanase showed 2.2 of the ratio of peakIII(DP 10-15) to peakII(DP 35-45). Acid hydrolysis extent of 2.2 N HCI-treated starch at $35^{\circ}C$ for 10 days was 96% and hydrolysis rate showed two step pattern which had border line at 4 days. In elution profiles of acid treated chestnut starch, amylopectin peak was disappeared compeletly after 6 hrs and converted short chains of DP 10-15. Amylose content was increased until 6 hrs but decreased after that. Hardness of starch gel made at $75^{\circ}C$ of heating temperature and cohesiveness of starch gel made at $85^{\circ}C$ of heating temperature were the highest. Retrogradation rate of starch gels were relatively high, especially for the starch gel made at $75^{\circ}C$ of heating temperature.

  • PDF

Homology Modeling and Molecular Docking Study of Translationally Controlled Tumor Protein and Artemisinin

  • Chae, Jin-Sun;Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2006
  • Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP of Plasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 of PfTCTP. Study of the docking of artemisinin with heme, and subsequently with PfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure of PfTCTP was built by homology modeling, using the NMR structure of the TCTP of Schizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme and PfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of $2.6{\AA}$, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on the PfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of $2.48{\AA}$, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharide from the Fruiting Body of Cordyceps militaris

  • Lee, Jong-Seok;Kwon, Jeong-Seok;Won, Dong-Pil;Lee, Jung-Hyun;Lee, Keun-Eok;Lee, Shin-Young;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1053-1060
    • /
    • 2010
  • Cordyceps militaris, an entomopathogenic fungus belonging to the class Ascomycetes, has been reported to have beneficial biological activities such as hypoglycemic, anti-inflammatory, antitumor, antimetastatic, hypolipidemic, immunomodulatory, and antioxidant effects. In this study, the crude water-soluble polysaccharide CMP, which was obtained from the fruiting body of C. militaris by hot water extraction and ethanol precipitation, was fractionated by DEAE-cellulose and Sepharose CL-6B column chromatographies. This process resulted in three polysaccharide fractions, termed CMP Fr I, CMP Fr II, and CMP Fr III. Of these fractions, CMP Fr II, with an average molecular mass of 127 kDa, was able to upregulate effectively the phenotypic functions of macrophages such as NO production and cytokine expression. The chemical property of the stimulatory polysaccharide, CMP Fr II, was determined based on its monosaccharide composition, which consisted of glucose (56.4%), galactose (26.4%), and mannose (17.2%). Its structural characteristics were investigated by a combination of chemical and instrumental analyses, including methylation, reductive cleavage, acetylation, Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GCMS). Results indicated that CMP Fr II consisted of the (1${\rightarrow}$4) or (1${\rightarrow}$2) linked glucopyranosyl or galactopyranosyl residue with a (1${\rightarrow}$2) or (1${\rightarrow}$6) linked mannopyranosyl, glucopyranosyl, or galactopyranosyl residue as a side chain. The configuration of the ${\beta}$-linkage and random coil conformation of CMP Fr II were confirmed using a Fungi-Fluor kit and Congo red reagent, respectively.

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

Effect of Gamma Irradiation on the Structural and Physiological Properties of Silk Fibroin

  • Sung, Nak-Yun;Byun, Eui-Baek;Kwon, Sun-Kyu;Kim, Jae-Hun;Song, Beom-Seok;Choi, Jong-Il;Kim, Jin-Kyu;Yoon, Yo-Han;Byun, Myung-Woo;Kim, Mee-Ree;Yoo, Hong-Sun;Lee, Ju-Woon
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.228-233
    • /
    • 2009
  • This study was conducted to examine the changes in the molecular structure and physiological activities of silk fibroin by gamma irradiation. The results of gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the molecular weight of fibroin was increased depending upon the irradiation dose. Secondary structure of fibroin determined by using circular dichroism revealed that the ratio of $\alpha$-helix was increased up to 10 kGy and then decreased depending upon the irradiation dose. Whereas, the ratio of $\beta$-sheet, $\beta$-turn, and random coil were decreased and then increased with an alteration in the $\alpha$-helix secondary conformation. The 2.2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging activity of fibroin was increased by gamma irradiation at 5 kGy, but was decreased above 10 kGy depending upon the irradiation dose. Also, the inhibition activities of tyrosinase and melanin synthesis of fibroin were increased by gamma irradiation. These results indicated that gamma irradiation could be used as an efficient method to make fibroin more suitable for the development of functional foods and cosmetics.

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Purification and Characteristics of New Biopolymer Produced by Alkaline-Tolerant Bacillus sp. (알칼리 내성 Bacillus sp.가 생산하는 생물 고분자의 정제 및 특성)

  • Lee, Shin-Young;Won, Suk;Kang, Tae-Su;Lee, Myong-Yurl;Lew, In-Deok;Kim, Jin-Young
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.554-560
    • /
    • 1998
  • Biopolymer from alkaline-tolerant Bacillus so. was purified, and its physico-chemical and structural properties were investigated. Crude biopolymer, precipitated by acetone from culture broth was fractionated into two fractions by gel chromatography on Sephadex G-200. Among two fractions, one fraction(PS I), which an acidic biopolymer precipitated by the CPC(cetylpyridinium chloride) treatment was studied further. PS I fraction had carboxyl groups and was positive at color reaction of sugar. PS I fraction also showed UV absorbance at 190-225nm. The purified acidic biopolymer was composed of 4% glucose, 8% glucosamine and 88% glutamic acid. Sugar components of the purified acidic biopolymer seemed to be linked to PGA(polyglutamic acid) which existed in the from of ${\gamma}$-peptide bond. By the results of Smith degradation of sugar components, glucose and glucosamine was bound by 1,3 glocosidic linkage. Therefore, this biopolymer was a glycopeptide, oligosaccaride ${\gamma}$-PGA. We concluded that the equivalent weight and the molecular weight of this biopolymer were estimated as about 171 and 5x105 dalton, respectively.

  • PDF

${\alpha}-Tocopherol$ as a Fluorescent Probe -< I > Its spectroscopic characterization and use as a probe of liposome- (형광성 탐색자(探索者)로서 ${\alpha}-Tocopherol$ -< I > 분자분광학적 특성과 Liposome Probe로서의 이용-)

  • Jeong, Jin;Kim, Dong-Hurn
    • Applied Biological Chemistry
    • /
    • v.25 no.4
    • /
    • pp.224-231
    • /
    • 1982
  • ${\alpha}-Tocopherol$ was found to be a fluorescent probe in determination of the phasetransition temperature of liposome. Since this was a discovery of a new aspect of ${\alpha}-tocopherol$ as an important biochemical molecule, its molecular spectroscopic characterization was carried out in order to obtain some informations on its spectral and, structural properties in various media, anticipating that the compound may entertain a wide applications in biochemical systems as a spectroscopic probe. Two species of α${\alpha}-tocopherol$, monomer and dimer, were found to exist in organic media, especially in solvents of nonhydrogen bonding ability. Monomer with maximum UV-absorption around $(291{\sim}294nm)$ is highly fluorescent, while dimer which is formed by intermolecular hydrogen bonds and absorbes with spectral peak at 298nm is nonfluorescent. ${\alpha}-tocopherol$ incorporated to liposome exhibits emission property quite different from that in various organic media showing broad and red-shifted fluorescence excitation and emission spectra. This spectral abnormality is to be interpreted to arise from chromanolate-type ion, H-dissociated ${\alpha}-tocopherol$.

  • PDF