• Title/Summary/Keyword: molecular pathogenesis

Search Result 590, Processing Time 0.029 seconds

Curcumin Alleviates Dystrophic Muscle Pathology in mdx Mice

  • Pan, Ying;Chen, Chen;Shen, Yue;Zhu, Chun-Hua;Wang, Gang;Wang, Xiao-Chun;Chen, Hua-Qun;Zhu, Min-Sheng
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.531-537
    • /
    • 2008
  • Abnormal activation of nuclear factor kappa B ($NF-{\kappa}B$) probably plays an important role in the pathogenesis of Duchenne's muscular dystrophy (DMD). In this report, we evaluated the efficacy of curcumin, a potent $NF-{\kappa}B$ inhibitor, in mdx mice, a mouse model of DMD. We found that it improved sarcolemmic integrity and enhanced muscle strength after intraperitoneal (i.p.) injection. Histological analysis revealed that the structural defects of myofibrils were reduced, and biochemical analysis showed that creatine kinase (CK) activity was decreased. We also found that levels of tumor necrosis factor alpha ($TNF-\alpha$), interleukin-1 beta ($IL-1\beta$) and inducible nitric oxide synthase (iNOS) in the mdx mice were decreased by curcumin administration. EMSA analysis showed that $NF-{\kappa}B$ activity was also inhibited. We thus conclude that curcumin is effective in the therapy of muscular dystrophy in mdx mice, and that the mechanism may involve inhibition of $NF-{\kappa}B$ activity. Since curcumin is a non-toxic compound derived from plants, we propose that it may be useful for DMD therapy.

Molecular Imaging of Arthritis in the Angiogenic Vasculature Using A 123I-Vascular Endothelial Growth Factor Receptor Antibody

  • Kim, Sung-Min;Choi, Na-Eun;Song, Young-Kyu;Cho, Gyung-Goo;Bang, Jeong-Kyu;Kim, Sang-Mi;Lee, Sang-Hoon;Ryu, Eun-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1890-1894
    • /
    • 2012
  • Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) have been implicated in the pathogenesis of rheumatoid arthritis, which is angiogenesis dependent. Antibody-based molecular imaging improves targeting, and antibody radiolabeling is useful for monitoring biological events $in$ $vivo$ $via$ PET or SPECT. We investigated the potential of molecular imaging to diagnose arthritis with VEGFR-2 $in$ $vivo$. The $^{123}I$-VEGFR-2 antibody was prepared by the iodogen tube method. The radioligand was injected into arthritic mice, and micro SPECT/CT was performed. The arthritic mice were examined by 4.7-T MRI and immunohistochemistry. The $^{123}I$-VEGFR-2 antibody showed high uptake in the arthritic region at 1 h postinjection on SPECT/CT but no uptake in the control animals after radioligand injection. In MR images, the arthritic tissue of the mice was correlated with regions labeled by the $^{123}I$-VEGFR-2 antibody. Immunohistochemical localization showed markedly increased expression of VEGFR-2 in the endothelial cells, fibroblasts, and macrophages of the arthritic mice.

Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms

  • Kim, Jaekwang;Yoon, Hyejin;Basak, Jacob;Kim, Jungsu
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.767-776
    • /
    • 2014
  • Alzheimer's disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-${\alpha}$ ($A{\alpha}$) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ${\varepsilon}4$ allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates $A{\alpha}$ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on $A{\alpha}$ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.

Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation

  • Kim, Young-Mi;Kim, Jung Hwan;Kwon, Hyuk Min;Lee, Dong Heon;Won, Moo-Ho;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Korean Red Ginseng extract (KRGE) is a traditional herbal medicine utilized to prevent endothelium dysfunction in the cardiovascular system; however, its underlying mechanism has not been clearly elucidated. We here examined the pharmacological effect and molecular mechanism of KRGE on apoptosis of human umbilical vein endothelial cells (HUVECs) in a serum-deprived apoptosis model. KRGE protected HUVECs from serum-deprived apoptosis by inhibiting mitochondrial cytochrome c release and caspase-9/-3 activation. This protective effect was significantly higher than that of American ginseng extract. KRGE treatment increased antiapoptotic Bcl-2 and Bcl-$X_L$ protein expression and Akt-dependent Bad phosphorylation. Moreover, KRGE prevented serum deprivation-induced subcellular redistribution of these proteins between the mitochondrion and the cytosol, resulting in suppression of mitochondrial cytochrome c release. In addition, KRGE increased nitric oxide (NO) production via Akt-dependent activation of endothelial NO synthase (eNOS), as well as inhibited caspase-9/-3 activities. These increases were reversed by co-treatment of cells with inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) and pre-incubation of cell lysates in dithiothreitol, indicating KRGE induces NO-mediated caspase modification. Indeed, KRGE inhibited caspase-3 activity via S-nitrosylation. These findings suggest that KRGE prevents serum deprivation-induced HUVEC apoptosis via increased Bcl-2 and Bcl-$X_L$ protein expression, PI3K/Akt-dependent Bad phosphorylation, and eNOS/NO-mediated S-nitrosylation of caspases. The cytoprotective property of KRGE may be valuable for developing new pharmaceutical means that limit endothelial cell death induced during the pathogenesis of vascular diseases.

The Peripheral Immune Landscape in a Patient with Myocarditis after the Administration of BNT162b2 mRNA Vaccine

  • Yoon, Bo Kyung;Oh, Tae Gyu;Bu, Seonghyeon;Seo, Kyung Jin;Kwon, Se Hwan;Lee, Ji Yoon;Kim, Yeumin;Kim, Jae-woo;Ahn, Hyo-Suk;Fang, Sungsoon
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.738-748
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.

Molecular Biological Studies on Korean Garlic Viruses

  • Choi, Jin-Nam;Song, Jong-Tae;Shin, Chan-Seok;La, Yong-Joon;Lee, Jong-Seob;Choi, Yang-Do
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.86-102
    • /
    • 1994
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolate cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and that of six clones containing poly (A) tail were compared with those of other plant viruses. One of those clones, V9 has 81.8% similarity in nucleotide sequence and 93.0% in deduced amino acid sequence, respectively, to the coat protein gene for garlic mosaic virus (GMV). Northern blot analysis with the clone V9 demonstrated that the genome of GMV is 7.8 kb long and has poly (A) tail. The anti-coat protein antibody for GMV recognizes 35 kDa polypeptide which could be the coat protein of GMV from infected garlic leaf extract or virus preparation. Clone G7 has about 62% of deduced amino acid sequence identity with the members of potyvirus group. Northern blot analysis with the clone G7 demonstrated that the genome of the potyvirus I garlic is 9.0 kb long and has poly (A) tail. The third clone, S81, shows 42% amino acid identity to the potexvirus. The other clones are under the characterization. To test the possibility of producing garlic virus resistant plant, we have designed a hairpin type ribozyme to cleave V9 RNA at the middle of the coat protein gene. From the cleavage reactions in vitro with two different sizes of RNA substrates, V9SUB (144 nucleotides) and V9 RNA (1,361 nucleotides), the ribozyme can cleave V9 sequence effectively at the predicted site. To study the activity of the ribozyme in vivo, plant transformation is in progress. Further possibilities to produce garlic virus resistant plant will be discussed.

  • PDF

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Bovine mastitis-associated Escherichia coli

  • Hong Qui Le;Se Kye Kim;Jang Won Yoon
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.181-190
    • /
    • 2024
  • Bovine mastitis-associated Escherichia coli (BMEC) is considered the main causative agent of significant financial losses in the dairy industry worldwide, as it alters both the quantity and quality of milk produced and increases the rate of culling. This creates a variety of challenges for researchers, veterinarians, and farmers in understanding and determining the most effective therapies and diagnostic techniques. Subclinical mastitis is particularly concerning, as infected bovines exhibit no obvious symptoms and continue to secrete apparently normal milk over an extended period, allowing the causative pathogen, E. coli, to spread within the herd. For effective prevention, understanding the pathogenesis of mastitis through three stages invasion, infection, and inflammation is essential. To date, no clear correlation has been found between virulence factors and pathogenicity contributing to the clinical severity of BMEC. Multidrug-resistant E. coli and the evolution of novel resistance mechanisms have become concerns owing to the extensive use of antibiotics to treat mastitis. Therefore, it is vital to explore alternative controls to enhance the efficacy of BMEC treatment. Over the past 30 years, various genetic typing techniques have been used to examine the subspecies-level epidemiology of bovine mastitis. These studies have advanced our understanding of the origin, transmission pathway, population structure, and evolutionary relatedness of BMEC strains. In this review we provide an overview of BMEC, including insights into its etiology, genetic relationship, pathogenesis, and management of the disease, as well as new therapy options.

Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo

  • Choi, Hee-Soon;Lee, Sun-Hwa;Kim, So-Young;An, Jae-Jin;Hwang, Seok-Il;Kim, Dae-Won;Yoo, Ki-Yeon;Won, Moo-Ho;Kang, Tae-Cheon;Kwon, Hyung-Joo;Kang, Jung-Hoon;Cho, Sung-Woo;Kwon, Oh-Shin;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.253-262
    • /
    • 2006
  • Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of $\alpha$-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant $\alpha$-synuclein genes were fused with a gene fragment encoding the nine amino acid trans activator of transcription (Tat) protein transduction domain of HIV-l in a bacterial expression vector to produce a genetic in-frame WT Tat-$\alpha$-synuclein (wild type) and mutant Tat-a-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-$\alpha$-synucleins in vitro and in vivo. WT Tat-$\alpha$-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-$\alpha$-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-$\alpha$-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-$\alpha$-synuclein. These results suggest that transduced Tat-$\alpha$-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.