• 제목/요약/키워드: molecular mutations

검색결과 580건 처리시간 0.029초

복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid, 그리고 flupyradifurone에 대한 저항성 모니터링과 점 돌연변이 분석 (Resistance Monitoring and Analysis of Point Mutations to λ-cyhalothrin, Imidacloprid, and Flupyradifurone in Field-collected Populations of Myzus persicae (Hemiptera: Aphididae))

  • 문하현;이유노;강동현;김세은;김현경;구현나;김길하
    • 한국응용곤충학회지
    • /
    • 제63권1호
    • /
    • pp.33-42
    • /
    • 2024
  • 복숭아혹진딧물(Myzus persicae)은 다식성으로 담배, 감자, 고추, 배추, 복숭아 등에 심각한 피해를 입히는 대표적인 농업해충이다. 본 연구에서는 국내 복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid 및 flupyradifurone에 대한 약제 저항성 발달 수준과 점 돌연변이(R81T, L1014F, M918L)의 발생 여부를 확인하였다. 또한, qRT-PCR을 통해 사이토크롬 P450 유전자인 CYP6CY3 발현량을 확인하였다. 그 결과, λ-cyhalothrin은 저항성비(Resistance Ratio, RR)가 12개 모든 지역이 > 200으로 높은 저항성을 보였다. Imidacloprid와 flupyradifurone은 YS, UR, HY, 그리고 WJ 개체군에서 > 200의 저항성비로 높은 저항성을 나타냈다. R81T는 12개 집단 중 약 50%, L1014F는 약 33.3%, M918L은 100%에서 발현하였다. 또한 qRT-PCR을 통해 imidacloprid 저항성 개체에서 subunit CYP6CY3의 발현량이 높게 나타난 것을 확인하였다. 이러한 결과는 M918L 점 돌연변이는 λ-cyhalothrin 저항성 진단마커로, R81T와 CYP6CY3의 높은 발현은 imidacloprid 저항성 진단마커로 활용이 가능하다는 것을 시사한다.

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

암 치료 표적으로서 p53의 구조적 및 기능적 역할 (The Structural and Functional Role of p53 as a Cancer Therapeutic Target)

  • 한창우;박소영;정미숙;장세복
    • 생명과학회지
    • /
    • 제28권4호
    • /
    • pp.488-495
    • /
    • 2018
  • p53 유전자는 스트레스, DNA 손상, 저산소증 및 종양 발생에 대한 세포 반응의 전사 조절에서 중요한 역할을 담당한다. 최근에 발견된 다양한 종류의 p53의 생리 활성을 생각한다면 p53이 암 조절에 관여한다는 것은 놀랄만한 일이 아니다. 인간 암의 약 50%에는 p53 유전자의 돌연변이 또는 p53을 활성화시키는 기전의 결함을 통해 p53 단백질 기능의 불활성화가 나타난다. p53 기능의 이러한 장애는 p53 의존 반응으로부터 회피를 허용함으로써 종양의 진화에 결정적인 역할을 하게 된다. 최근의 많은 연구들은 p53의 돌연변이를 대폭 감소시키거나 p53의 종양 억제 기능을 복원하기 위하여 선택적인 저분자 화합물을 동정함으로써 p53의 돌연변이를 직접 표적하는 것에 초점을 두고 있다. 이들 저분자는 좋은 약물과 유사한 특성을 유지하면서 다양한 상호작용을 효과적으로 조절해야 한다. 이 중, p53의 음성조절인자 핵심인 MDM2의 발견은 p53과 MDM2 간의 상호작용을 차단하는 새로운 저분자 억제제의 설계를 제공하였다. 저분자 화합물 중 일부는 개념 증명 연구에서 임상 시험으로 옮겨졌으며 향후 맞춤형 항암제가 추가될 전망이다. 본 리뷰에서는 야생형 p53과 돌연변이 p53의 구조적 및 기능적 중요성과 p53을 직접 표적하는 치료제 개발, p53과 MDM2 간의 상호작용을 억제하는 화합물에 대하여 검토하였다.

대장균에서의 human SOD1과 mutant SOD1 (G93A) 단백질의 발현과 HtrA2의 기질 여부 확인에 관한 연구 (Expression of Human SOD1 and Mutant SOD1 (G93A) in E. coli and Identification of SOD1 as a Substrate of HtrA2 Serine Protease)

  • 김구영;김상수;박효진;임향숙
    • 생명과학회지
    • /
    • 제16권5호
    • /
    • pp.716-722
    • /
    • 2006
  • Superoxide dismutase (SOD) is physiologically important in regulating cellular homeostasis and apoptotic cell death, and its mutations are the cause of familial amyotrophic lateral sclerosis (FALS). Mitochondrial serine protease HtrA2 has a pro-apoptotic function and has known to be associated with neurodegenerative disorders. To investigate the relationship between genes associated with apoptotic cell death, such as HtrA2 and SOD1, we utilized the pGEX expression system to develop a simple and rapid method for purifying wild-type and ALS-associated mutant SOD1 proteins in a suitable form for biochemical studies. We purified SOD1 and SOD1 (G93A) proteins to approximately 90% purity with relatively high yields (3 mg per liter of culture). Consistent with the result in mammalian cells, SOD1 (G93A) was more insoluble than wild-type SOD1 in E. coli, indicating that research on the aggregate formation of SOD1 may be possible using this pGEX expression system in E. coli. We investigated the HtrA2 serine protease activity on SOD1 to assess the relationship between two proteins. Not only wild-type SOD1 but also ALS-associated mutant SOD1 (G93A) were cleaved by HtrA2, resulting in the production of the 19 kDa and 21 kDa fragments that were specific for anti-SOD1 antibody. Using protein gel electrophoresis and immunoblot assay, we compared the relative molecular masses of thrombin-cleaved GST-SOD1 and HtrA2-cleaved SOD1 fragments and can predict that the HtrA2-cleavage sites within SOD1 are the peptide bonds between leucine 9-lysine 10 (L9-K10) and glutamine 23-lysine 24 (Q23-K24). Our study indicates that SOD1 is one of the substrate for HtrA2, suggesting that both HtrA2 and SOD1 may be important for modulating the HtrA2-SOD1-mediated apopotic cell death that is associated with the pathogenesis of neurodegenerative disorder.

Sequence variation of necdin gene in Bovidae

  • Peters, Sunday O.;Donato, Marcos De;Hussain, Tanveer;Rodulfo, Hectorina;Babar, Masroor E.;Imumorin, Ikhide G.
    • Journal of Animal Science and Technology
    • /
    • 제60권12호
    • /
    • pp.32.1-32.10
    • /
    • 2018
  • Background: Necdin (NDN), a member of the melanoma antigen family showing imprinted pattern of expression, has been implicated as causing Prader-Willi symptoms, and known to participate in cellular growth, cellular migration and differentiation. The region where NDN is located has been associated to QTLs affecting reproduction and early growth in cattle, but location and functional analysis of the molecular mechanisms have not been established. Methods: Here we report the sequence variation of the entire coding sequence from 72 samples of cattle, yak, buffalo, goat and sheep, and discuss its variation in Bovidae. Median-joining network analysis was used to analyze the variation found in the species. Synonymous and non-synonymous substitution rates were determined for the analysis of all the polymorphic sites. Phylogenetic analysis were carried out among the species of Bovidae to reconstruct their relationships. Results: From the phylogenetic analysis with the consensus sequences of the studied Bovidae species, we found that only 11 of the 26 nucleotide changes that differentiate them produced amino acid changes. All the SNPs found in the cattle breeds were novel and showed similar percentages of nucleotides with non-synonymous substitutions at the N-terminal, MHD and C-terminal (12.3, 12.8 and 12.5%, respectively), and were much higher than the percentage of synonymous substitutions (2.5, 2.6 and 4.9%, respectively). Three mutations in cattle and one in sheep, detected in heterozygous individuals were predicted to be deleterious. Additionally, the analysis of the biochemical characteristics in the most common form of the proteins in each species show very little difference in molecular weight, pI, net charge, instability index, aliphatic index and GRAVY (Table 4) in the Bovidae species, except for sheep, which had a higher molecular weight, instability index and GRAVY. Conclusions: There is sufficient variation in this gene within and among the studied species, and because NDN carry key functions in the organism, it can have effects in economically important traits in the production of these species. NDN sequence is phylogenetically informative in this group, thus we propose this gene as a phylogenetic marker to study the evolution and conservation in Bovidae.

BRAF, EGFR, KRAS 유전자 분자병리검사에서 DNA 품질에 영향을 미치는 병리학적인 인자에 관한 연구 (Pathological Factors Affecting DNA Quality in BRAF, EGFR, and KRAS Gene Molecular Tests)

  • 윤현구;김보라;이주미;송은하;김동훈
    • 대한임상검사과학회지
    • /
    • 제52권4호
    • /
    • pp.381-388
    • /
    • 2020
  • 정확한 분자병리검사를 위해 검체에 대한 질관리의 중요성이 강조되고 있다. 본 연구에서 BRAF, EGFR, KRAS 돌연변이 검사에 대해, 검체 종류 및 처리과정 중 DNA 품질에 영향을 미치는 인자를 알아보고자 하였다. 모두 1,772건의 분자병리검사에 대해, 검체의 종류, 포르말린 고정시간, 재검기록 등 DNA 품질에 영향을 미칠 수 있는 임상병리학적 요소를 조사하였다. 세포검체는 고정액으로 처리를 한 검체보다 생리식염수에 보관한 검체가 DNA 품질이 좋았다. 조직검체는 10% 중성 포르말린에 24시간 이내에 고정된 검체가 그 이상 고정된 검체보다 DNA 품질이 좋았다. 검체 종류 중 신선조직검체, 그리고 종양세포밀도가 높은 조직검체가 파라핀포매조직 및 세침흡인액상 세포검체보다 상대적으로 DNA 품질이 좋았다. 10% 중성 포르말린에 24시간 이상 오래 고정된 검체일수록 Non-PNA Ct값이 비례 증가하여, 포르말린 고정시간이 검체 DNA 품질에 영향을 준다는 것을 확인하였다. 결론적으로 종양세포의 밀도 및 적절한 포르말린 고정시간이 DNA 품질을 유지하는데 가장 중요한 요소이며, 신속하고 정확한 분자병리진단을 위해 이들 요소를 적절히 관리하여 최적의 DNA 품질을 유지하도록 해야 한다.

Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas

  • Lihong Bu;NingTu;Ke Wang;Ying Zhou;Xinli Xie;Xingmin Han;Huiqin Lin;Hongyan Feng
    • Korean Journal of Radiology
    • /
    • 제23권1호
    • /
    • pp.112-123
    • /
    • 2022
  • Objective: To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods: This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0-84.0 years) who had undergone surgical removal of stage IA-IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann-Whitney U test or the Kruskal-Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman's correlation. Statistical significance was set at p < 0.05. Results: SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion: As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.

A Large Genomic Deletion in Gibberella zeae Causes a Defect in the Production of Two Polyketides but not in Sexual Development or Virulence

  • Lee Sun-Hee;Kim Hee-Kyoung;Hong Sae-Yeon;Lee Yin-Won;Yun Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.215-221
    • /
    • 2006
  • Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of cereal crops. This fungus produces a broad range of secondary metabolites, including polyketides such as aurofusarin (a red pigment) and zearalenone (an estrogenic mycotoxin), which are important mycological characteristics of this species. A screen of G. zeae insertional mutants, generated using a restriction enzyme-mediated integration (REMI) procedure, led to the isolation of a mutant (Z43R606) that produced neither aurofusarin nor zearalenone yet showed normal female fertility and virulence on host plants. Outcrossing analysis confirmed that both the albino and zearalenone-deficient mutations are linked to the insertional vector in Z43R606. Molecular characterization of Z43R606 revealed a deletion of at least 220 kb of the genome at the vector insertion site, including the gene clusters required for the biosynthesis of aurofusarin and zearalenone, respectively. A re-creation of the insertional event of Z43R606 in the wild-type strain demonstrated that the 220-kb deletion is responsible for the phenotypic changes in Z43R606 and that a large region of genomic DNA can be efficiently deleted in G. zeae by double homologous recombination. The results showed that 52 putative genes located in the deleted genomic region are not essential for phenotypes other than the production of both aurofusarin and zearalenone. This is the first report of the molecular characterization of a large genomic deletion in G. zeae mediated by the REMI procedure.

지대형 근이양증 (Limb-girdle Muscular Dystrophy)

  • 김대성
    • Annals of Clinical Neurophysiology
    • /
    • 제6권2호
    • /
    • pp.65-74
    • /
    • 2004
  • Limb-girdle muscular dystrophy (LGMD) is a heterogeneous group of inherited muscle disorders caused by the mutations of different genes encoding muscle proteins. In the past, when the molecular diagnostic techniques were not available, the subtypes of muscular dystrophies were classified by the pattern of muscle weakness and the mode of inheritance, and LGMD had been considered as a 'waste basket' of muscular dystrophy because many unrelated heterogeneous cases with 'limb-girdle' weakness were put into the category of LGMD. With the advent of molecular genetics at the end of the last century, it has been known that there are many subtypes of LGMD caused by the mutation of different genes, and now, LGMD is classified according to the results of the linkage analysis and the genes or proteins affected. Only small proportion (probably less than 10%) of LGMD is dominantly inherited, and autosomal dominant LGMD (AD-LGMD) consists of six subtypes (LGMD1A to 1F) so far. In autosomal recessive LGMD (AR-LGMD), more than 10 subtypes (LGMD2A to 2J) have been linked and most of the causative genes have been identified. Among AR-LGMDs, LGMD2A (calpain 3 deficiency), 2B (dysferlin deficiency), and sarcoglycanopathy (LGMD2C-2F) are major subtypes. The defective proteins in LGMDs are components of nuclear envelope, cytosol, sarcomere, or sarcolemma, and seem to play a different role in the pathogenesis of muscular dystrophy. It is notable that many causative genes of LGMDs are also responsible for other categories of muscular dystrophy or diseases affecting other tissue. However, by which mechanism they produce such a broad phenotypic variability is still unknown. The identification of mutation in the relevant gene is confirmative for the diagnosis, and is essential for genetic counseling and antenatal diagnosis of LGMD. Because many different genes are responsible for LGMD, differentiation of subtypes using immunohistochemistry and western blotting is the essential step toward the detection of mutation. For the effective research and medical care of the patients with muscular dystrophy in Korea, a research center with a medical facility supported by the government seems to be needed.

  • PDF

지속되는 신생아 담즙 정체증과 간비비대를 주소로 내원하여 유전자분석으로 확진된 C형 Niemann-Pick병 (Molecular diagnosis of Niemann-Pick type C presenting with neonatal cholestasis and hepatosplenomegaly)

  • 정민희;고정민;김구환;유한욱
    • Journal of Genetic Medicine
    • /
    • 제4권2호
    • /
    • pp.200-203
    • /
    • 2007
  • C형 Niemann-Pick병은 NPC1 및 NPC2 유전자의 돌연변이로 인해 발생하는 질환으로 상염색체 열성으로 유전되며 신생아 간염과 간비비대, 이후 안구의 수직운동 마비, 조화운동불능, 구음장애, 근육긴장이상, 경련 등 서서히 진행하는 신경학적 이상을 보이게 된다. 환아는 7개월 된 여아로 출생 후부터 황달과 간비비대가 지속되어 리소솜성 축적질환을 의심하였고 시행한 골수검사상 거품형태의 조직구가 관찰되어 Niemann-Pick병을 진단하였다. 신생아 황달, 간비비대 등 환아의 임상양상을 고려했을 때 C형 Nimann-Pick병이 의심되었고 확진을 위해 시행한 NPC1 유전자 검사에서 c.451_452del (p.Ser151TrpfsX18) 및 새로운 돌연변이인 c.1757+3_6del의 이형접합체임을 확인하여 질환을 확진 하였다.

  • PDF