• 제목/요약/키워드: molecular mutations

검색결과 585건 처리시간 0.029초

Alteration of voltage-dependent activation by a single point mutation of a putative nucleotide-binding site in large-conductance $Ca^{2+}$-activated $K^+$ channel

  • Kim, Hyun-Ju;Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.44-44
    • /
    • 2003
  • $BK_{Ca}$ channels were suggested to contain one or more domains of the ‘regulator of K+ conductance’(RCK) in their cytosolic carboxyl termini (Jiang et al.2001). It was also shown that the RCK domain in mammalian $BK_{Ca}$ channels might sense the intracellular $Ca^{2+}$ with a low affinity (Xia et al. 2002). We aligned the amino acid sequence of the $\alpha$-subunit of rat $BK_{Ca}$ channels (rSlo) with known RCK domains and identified a second region exhibiting about 50% homology. This putative domain, RCK2, contains the characteristic amino acids conserved in other RCK domains. We wondered whether this second domain is involved in the domain-domain interaction and the gating response to intracellular $Ca^{2+}$ for rSlo channel, as revealed in the structure of RCK domain of E. coli channel (Jiang et al.2001). In order to examine the possibility, site-directed mutations were introduced into the RCK2 domain of rSlo channel and the mutant channels were expressed in Xenopus oocytes for functional studies. One of such mutation, G772D, in the putative nucleotide-binding domain resulted in the enhanced $Ca^{2+}$ sensitivity and the channel gating of rSlo channel. These results suggest that this region of $BK_{Ca}$ channels is important for the channel gating and may form an independent domain in the cytosolic region of $BK_{Ca}$ channels. In order to obtain the mechanistic insights of these results, G772 residue was randomly mutagenized by site-directed mutagenesis and total 17 different mutant channels were constructed. We are currently investigating these mutant channels by electrophysiological techniques.ical techniques.

  • PDF

Time-Lapse Live-Cell Imaging Reveals Dual Function of Oseg4, Drosophila WDR35, in Ciliary Protein Trafficking

  • Lee, Nayoung;Park, Jina;Bae, Yong Chul;Lee, Jung Ho;Kim, Chul Hoon;Moon, Seok Jun
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.676-683
    • /
    • 2018
  • Cilia are highly specialized antennae-like organelles that extend from the cell surface and act as cell signaling hubs. Intraflagellar transport (IFT) is a specialized form of intracellular protein trafficking that is required for the assembly and maintenance of cilia. Because cilia are so important, mutations in several IFT components lead to human disease. Thus, clarifying the molecular functions of the IFT proteins is a high priority in cilia biology. Live imaging in various species and cellular preparations has proven to be an important technique in both the discovery of IFT and the mechanisms by which it functions. Live imaging of Drosophila cilia, however, has not yet been reported. Here, we have visualized the movement of IFT in Drosophila cilia using time-lapse live imaging for the first time. We found that NOMPB-GFP (IFT88) moves according to distinct parameters depending on the ciliary segment. NOMPB-GFP moves at a similar speed in proximal and distal cilia toward the tip (${\sim}0.45{\mu}m/s$). As it returns to the ciliary base, however, NOMPB-GFP moves at ${\sim}0.12{\mu}m/s$ in distal cilia, accelerating to ${\sim}0.70{\mu}m/s$ in proximal cilia. Furthermore, while live imaging NOMPB-GFP, we observed one of the IFT proteins required for retrograde movement, Oseg4 (WDR35), is also required for anterograde movement in distal cilia. We anticipate our time-lapse live imaging analysis technique in Drosophila cilia will be a good starting point for a more sophisticated analysis of IFT and its molecular mechanisms.

Isolation and Genetic Mapping of Paraquat Resistant Sporulating Mutants of Streptomyces Coelicolor

  • Chung, Hye-Jung;Kim, Eun-Ja;Park, Uhn-Mee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제33권3호
    • /
    • pp.215-221
    • /
    • 1995
  • S. coelicolor A3(2) cells were treated with various redox-cycling agents on nutrient agar plates and examined for their effect on the growth and differentiation. When treated with plumbagin, severe effect on cell viability was observed at concentrations above 250 $\mu$M. However, the surviving colonies differentiated normally. When treated with 100 $\mu$M paraquat, growth rate was decreased and morphological differentiation was inhibited, while the survival rate was maintained at about 100% even at 5 mM paraquat. Menadione or lawsone did not cause any visible changes at concentrations up to 1 mM. The effect of paraquat was also observed when it was added to nutrient agar plate before spore inoculation. Paraquat had also observed when it was added to nutrient agar plate before spore inoculation. Paraquat had no effect on colonies growing on R2YE agar plates. Among the components of R2YE medium selectively added to nutrient agar medium, CaCl$_2$ was found to have some protective function from the inhibitory effect of paraquat. As a first step to study the mechanism of the inhibitory effect of paraquat on differentiation, resistant mutants which sporulate well in the presence of paraquat were screened following UV mutagenesis. Three paraquat-resistant mutants were isolated with a frequency of 3 $\times$10${-5}$. Their mutation sites were determined by genetic crossings. All three mutations were mapped to a single locus near arg4 at about 1 o'clock on the genetic map of S. coelicolor A3(2).

  • PDF

Expression and Functional Analysis of cofilin1-like in Craniofacial Development in Zebrafish

  • Jin, Sil;Jeon, Haewon;Choe, Chong Pyo
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권1호
    • /
    • pp.23-36
    • /
    • 2022
  • Pharyngeal pouches, a series of outgrowths of the pharyngeal endoderm, are a key epithelial structure governing facial skeleton development in vertebrates. Pouch formation is achieved through collective cell migration and rearrangement of pouch-forming cells controlled by actin cytoskeleton dynamics. While essential transcription factors and signaling molecules have been identified in pouch formation, regulators of actin cytoskeleton dynamics have not been reported yet in any vertebrates. Cofilin1-like (Cfl1l) is a fish-specific member of the Actin-depolymerizing factor (ADF)/Cofilin family, a critical regulator of actin cytoskeleton dynamics in eukaryotic cells. Here, we report the expression and function of cfl1l in pouch development in zebrafish. We first showed that fish cfl1l might be an ortholog of vertebrate adf, based on phylogenetic analysis of vertebrate adf and cfl genes. During pouch formation, cfl1l was expressed sequentially in the developing pouches but not in the posterior cell mass in which future pouch-forming cells are present. However, pouches, as well as facial cartilages whose development is dependent upon pouch formation, were unaffected by loss-of-function mutations in cfl1l. Although it could not be completely ruled out a possibility of a genetic redundancy of Cfl1l with other Cfls, our results suggest that the cfl1l expression in the developing pouches might be dispensable for regulating actin cytoskeleton dynamics in pouch-forming cells.

Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein

  • Man-Hyuk Han;Hee Wook Yang;Jungmin Yoon;Yvette Villafani;Ji-Young Song;Cheol Ho Pan;Keunwan Park;Youngmoon Cho;Ji-Joon Song;Seung Joong Kim;Youn-Il Park;Jiyong Park
    • Molecules and Cells
    • /
    • 제46권8호
    • /
    • pp.513-525
    • /
    • 2023
  • Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.

Association analysis of polymorphisms in six keratin genes with wool traits in sheep

  • Sulayman, Ablat;Tursun, Mahira;Sulaiman, Yiming;Huang, Xixia;Tian, Kechuan;Tian, Yuezhen;Xu, Xinming;Fu, Xuefeng;Mamat, Amat;Tulafu, Hanikezi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권6호
    • /
    • pp.775-783
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. Methods: To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. Results: We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in $Ile{\rightarrow}Thr$, $Glu{\rightarrow}Asp$, $Gly{\rightarrow}Ala$, $Ala{\rightarrow}Ser$, $Se{\rightarrow}His$; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p<0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). Conclusion: Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.

커넥신 세포막채널을 이용한 씨엠티엑스 돌연변이체의 분석 (Analysis of CMTX Mutants Using Connexin Membrane Channels)

  • 천미색;오승훈
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.764-769
    • /
    • 2008
  • 커넥신(connexin) 32 유전자의 돌연변이가 씨엠티엑스(CMTX, X-linked Charcot-Marie-Tooth) 질환과 관련이 있다. 현재까지 300여개 이상의 돌연변이가 보고가 되었으나 이 질환에 대한 상세한 분자병리학적 원인을 거의 알려져 있지 않고 있다. 여러 연구를 통해서 커넥신 세포막채널이 간극결합채널이 갖고 있는 대부분의 생물리학적 특성을 갖고 있는 것으로 판명되었다. 이번 연구에서는 씨엠티엑스 질환과 관련된 두 개의 돌연변이체를 선정하여 간극결합채녈 대신 돌연변이체로 구성된 커넥신 세포막채널을 이용하여 단일채널수준에서 이들 돌연변이체의 특성을 조사하였다. M34T 돌연변이 세포막채널의 생물리학적 특성은 이들로 구성된 돌연변이 간극결합채널의 특성과 거의 유사하였다. 더욱이, 돌연변이 세포막채널을 이용한 연구를 통해서 간극결합채널을 이용한 연구에서는 밝혀지지 않았던 개폐극성의 역전, 빠른 개폐의 소실과 느린 개폐의 생성과 같은 새로운 사실을 알게 되었다. T86C 돌연변이 세포막채널 또한 이의 모체가 되는 커넥신 32 세포막채널과 유사한 특성을 갖고 있음을 알게 되었다. 이상의 결과를 통해서 커넥신 세포막을 이용한 연구가 씨엠티엑스 질환의 돌연변이체를 연구하는데 매우 유용할 것으로 생각된다.

임상적으로 진단된 다발성 골단이형성증 1례 (A Clinically Diagnosed Case of Multiple Epiphyseal Dysplasia)

  • 김선자;조성윤;김진섭;허림;권영희;이지은;심종섭;김옥화;진동규
    • 대한유전성대사질환학회지
    • /
    • 제15권1호
    • /
    • pp.49-54
    • /
    • 2015
  • 다발성 골단이형성증은 비교적 흔한 골이형성증으로 소아기에 관절통과 관절 강직, 뒤뚱거리면 걸어가는 보행 및 일부에서 경한 저신장을 특징으로 하며 영상의학적 검사에서는 여러 관절에서 골단의 불규칙한 소견과 골화 지연을 보인다. 본 증례 환자는 임상적, 영상의학적으로 다발성 골단이형성증을 진단 할 수 있었으며 환자의 넓적다리 관절 영상 검사는 MATN3 유전자 변이를, 무릎 관절 영상 검사는 COMP 유전자 변이를 시사하였기에 MATN3과 COMP 유전자 변이에 대해 시퀀싱(sequencing)을 하였으나, 변이는 발견되지 않았다. 이후 엑솜시퀀싱(exomesequencing)을 시행하였으나, 기존에 다발성 골단이형성증과 관련이 있는 것으로 알려진 유전자에 대한 변이가 발견되지 않았다. 본 증례와 같이 임상적, 영상의학적으로 다발성 골단이형성증으로 진단가능 하였으나 분자유전학적으로 기존에 알려진 변이 유전자가 발견되지 않은 환자들을 위해 추가적인 연구가 필요할 것으로 보인다.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Analysis of Mutant Isocitrate Dehydrogenase 1 Immunoexpression, Ki-67 and Programmed Death Ligand 1 in Diffuse Astrocytic Tumours : Study of Single Center in Bandung, Indonesia

  • Bolly, Hendrikus Masang Ban;Faried, Ahmad;Hermanto, Yulius;Lubis, Billy Parulian;Tjahjono, Firman Priguna;Hernowo, Bethy Suryawathy;Arifin, Muhammad Zafrullah
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권1호
    • /
    • pp.100-109
    • /
    • 2021
  • Objective : Diffuse astrocytic tumour (DAT) is a diffuse infiltrative astrocytoma tumour accompanied by molecular parameters such as the presence or absence of isocitrate dehydrogenase (IDH) gene mutations. Ki-67 is a marker for DAT proliferation, while programmed death ligand 1 (PD-L1) indicates an immune evasion mechanism. This study aimed to analyze the correlation among mutant IDH1 R132H, Ki-67, and PD-L1 immunoexpression in the DAT. Methods : A cross-sectional study was carried out on 30 paraffin blocks of DAT cases. Paraffin block samples consist of grade II (n=14), grade III (n=8), and grade IV (n=8). In this study, the immunohistochemistry-staining of mutant IDH1 R132H, Ki-67, and PD-L1 were carried out to determine the frequency of DAT with IDH1 mutations. Results : Our study shown the frequency of IDH1 mutations in grade II 50.0% (7/14), grade III 37.5% (3/8), and grade IV 12.5% (1/8). Our study also showed a difference in Ki-67 and PD-L1 expression between each the degree of DAT histopathology (p=0.0001 and p=0.002, respectively). There was an association between both mutant IDH1 R132H, and Ki-67 with PD-L1 expression in DAT (p=0.0087 and p=0.0049, respectively). Conclusion : DAT with the mutant IDH1 is frequently observed in grade II and small number of grade III. The expression of wild type IDH1, Ki-67, and PD-L1 were found to be higher in high grade DAT (grade III and grade IV). There is a correlation between each of mutant IDH1 status and Ki-67 with PD-L1 expression in DAT.