Journal of Korea Artificial Intelligence Association
/
제2권1호
/
pp.7-14
/
2024
In this paper, we explore the application of RNA-sequencing data and ensemble machine learning to predict lung cancer and treatment strategies for lung cancer, a leading cause of cancer mortality worldwide. The research utilizes Random Forest, XGBoost, and LightGBM models to analyze gene expression profiles from extensive datasets, aiming to enhance predictive accuracy for lung cancer prognosis. The methodology focuses on preprocessing RNA-seq data to standardize expression levels across samples and applying ensemble algorithms to maximize prediction stability and reduce model overfitting. Key findings indicate that ensemble models, especially XGBoost, substantially outperform traditional predictive models. Significant genetic markers such as ADGRF5 is identified as crucial for predicting lung cancer outcomes. In conclusion, ensemble learning using RNA-seq data proves highly effective in predicting lung cancer, suggesting a potential shift towards more precise and personalized treatment approaches. The results advocate for further integration of molecular and clinical data to refine diagnostic models and improve clinical outcomes, underscoring the critical role of advanced molecular diagnostics in enhancing patient survival rates and quality of life. This study lays the groundwork for future research in the application of RNA-sequencing data and ensemble machine learning techniques in clinical settings.
Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems.
Partial nerve injury is the main cause of neuropathic pain disorders in humans. Acupuncture has long been used to relieve pain. It is known to relieve pain by controlling the activities of the autonomic nervous system. Although the mechanism of neuropathic pain and analgesic effects of electroacupuncture (EA) have been studied in a rat model system, its detailed mechanism at the molecular level remains unclear. To identify genes that might serve as either markers or explain these distinct biological functions, a cDNA microarray analysis was used to compare the expression of 8,400 genes among three sample groups. Messenger RNAs that were pooled from the spinal nerves of 7 normal. 7 neuropathic pain, and 7 EA treatment rat models were compared. Sixty-eight genes were differentially expressed more than 2-fold in the neuropathic rat model when compared to the normal, and restored to the normal expression level after the EA treatment. These genes are involved in a number of biological processes, including the signal transduction, gene expression, and nociceptive pathways. Confirmation of the differential gene expression was performed by a dot-blot analysis. Dot-blotting results showed that the opioid receptor sigma was among those genes. This indicates that opioid-signaling events are involved in neuropathic pain and the analgesic effects of EA. The potential application of these data include the identification and characterization of signaling pathways that are involved in the EA treatment, studies on the role of the opioid receptor in neuropathic pain, and further exploration on the role of selected identified genes in animal models.
Purpose: The aim of the study was to evaluate the correlation of ultrasound features with breast cancer molecular status. Materials and Methods: A retrospective review was performed of ultrasound findings in 263 patients diagnosed with breast invasive ductal carcinoma for comparison with immunohistochemistric results were obtained from each lesion. Relationships between ultrasound findings and molecular status were investigated by using multiple regression analysis by means of stepwise logistic regression. Differences in ultrasound criteria were assessed among women with different molecular status. Results: ER positivity was associated with small size, lobulate, angular or spiculated margin contours, absence of calcification, posterior tumor shadowing and low elasticity score; PR positivity was associated with small size, lobulate or angular or spiculated margin contours and absence of calcification; HER2 positivity was associated with presence of calcification and absence of any echogenic halo. The calculated models of predicted molecular status were accurate and discriminating with AUCs of 0.78, 0.74, and 0.74, respectively. Conclusions: Breast cnacer ultrasound features show some correlation with the molecular status. These models may help to expand the scope of ultrasound in predicting tumor biology.
이 연구에서는 기체 분자의 운동 방식에 관한 예비 화학 교사들의 오개념을 조사하기 위해 교재 분석 및 개념 검사를 실시하였다. 연구 결과, 일반화학 교재는 간단한 모형과 기본적인 개념 설명을 통해 기체 분자 운동을 다루고 접근 방식에서 차이를 보일 뿐 아니라 회전 운동에서 무게 중심에 대한 언급이 없는 교재가 상당 수 있었다. 이에 비해 물리화학 교재는 주로 분광학적인 측면에서 접근하였고 심화된 내용을 다양한 모형을 통해 제시하였으며 조사한 모든 교재에서 회전 운동의 무게 중심을 언급했다. 한편, 예비 교사들은 기체 분자의 운동 방식에 대한 이해 정도 및 자신감이 상당히 낮았으며, 많은 오개념을 지니고 있었다. 이는 예비 화학 교사들이 자신의 선개념에 근거한 직관 및 교재에서 제시한 시각 자료에 의존하는 경향이 크기 때문으로 생각된다.
흡수, 분포, 대사, 배설 특성 및 독성을 예측하기 위한 효과적인 툴을 개발하는 것은 신약개발의 초기단계에서 NCE(new chemical entity)에 대한 가장 중요한 업무 중의 하나이다. 최근에 이런 시도중의 하나로서 ADME/T(absorption, distribution, metabolism, excretion, toxicity)관련 성질들의 예측에 support vector machine(SVM)을 이용하고 있다. 그리고 SVM은 ADME/T 성질들을 정확하게 예측하는데 많이 사용 되고 있다. 그러나 SVM 모델링에 두 가지 문제가 있다. 특성 선택(feature selection) 과 매개변수 설정(parameter setting)은 여전히 해결해야 할 과제이다. 이 두 가지 문제들은 SVM 분류의 효율성과 정확도에 결정적인 영향을 끼친다. 특히 특성 선택과 최적화된 SVM 변수의 설정은 서로 영향을 주기 때문에 동시에 다루어져야 한다. 여기서 우리는 genetic algorithm(GA) – 특성 선택에 사용 – 과 grid search(GS) method– 변수최적화에 사용 – 두 가지를 통합하는 효과적인 해결책을 제시하였다. ADME/T관련 성질 중 하나인 심장부정맥을 야기시키는 hERG 이온채널 저해제 분류 모델이 여기서 제안된 GA-GS-SVM을 위해 할당되고 테스트 되었다. 1891개의 화합물을 가지는 트레이닝 셋으로 단일 모델 3개, 앙상블 모델 3개, 총 6개의 모델을 만들었고 175개의 외부 데이터를 테스트 셋으로 사용하여 검증하였다. 데이터의 불균형 문제를 해결하기 위하여 GA-GS-SVM 단일 모델에 의한 예측 정확도와 GA-GS-SVM 앙상블 모델 예측 정확도를 비교하였으며, 앙상블모델을 사용하여 예측의 정확도를 높일 수 있었다.
In order to investigate systematically the steady shear flow properties of aqueous po1y(ethylene oxide) (PEO) solutions having various molecular weights and concentrations, the steady flow viscosity has been measured with a Rheometrics Fluids Spectrometer (RFS II) over a wide range of shear rates. The effects of shear rate, concentration, and molecular weight on the steady shear flow properties were reported in detail from the experimentally measured data, and then the results were interpreted using the concept of a material characteristic time. In addition, some flow models describing the non-Newtonian behavior (shear-thinning characteristics) of polymeric liquids were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was examined by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) At low shear rates, aqueous PEO solutions show a Newtonian viscous behavior which is independent of shear rate. At shear rate region higher than a critical shear rate, however, they exhibit a shear-thinning behavior, demonstrating a decrease in steady flow viscosity with increasing shear rate. (2) As an increase in concentration and/or molecular weight, the zero-shear viscosity is increased while the Newtonian viscous region becomes narrower. Moreover, the critical shear rate at which the transition from the Newtonian to shear-thinning behavior occurs is decreased, and the shear-thinning nature becomes more remarkable. (3) Aqueous PEO solutions show a Newtonian viscous behavior at shear rate range lower than the inverse value of a characteristic time $1/{\lambda}_E$, while they exhibit a shear-thinning behavior at shear rate range higher than $1/{\lambda}_E$. For aqueous PEO solutions having a broad molecular weight distribution, the inverse value of a characteristic time is not quantitatively equivalent to the critical shear rate, but the power-law relationship holds between the two quantities. (4) The Cross, Carreau, and Carreau-Yasuda models are all applicable to describe the steady flow behavior of aqueous PEO solutions. Among these models, the Carreau-Yasuda model has the best validity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.