• Title/Summary/Keyword: molecular mobility

Search Result 289, Processing Time 0.036 seconds

Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350 (형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Streptomycetes is a group of Gram-positive soil bacteria that growas a branching vegetative mycelium leading to the formation of spores, and display a physiological differenti-ation related to the synthesis of many secondary metabolites including antibiotics. Their complex life cycle and multicellular differentiation require various levels of regulation and types of signal transduction systems including eukaryotic-type serine/threonine protein kinases and prokaryotic-type histidine/aspartic acid protein kinases. Akt kinase that was found in cells is a sorine/threonine kinase controlling signal pathway for multi-tude of important cellular events. The activation or inactivation of Akt kinase in the cell is one of the critical regulatory points to deliver cell proliferation, differentiation, survival or apoptosis signal. To find the regula-tory protein homologous to Akt in Streptomyces, the fluorescien-labeled synthetic peptide (FITC-TRRSR-TESIT) was designed from the consensus sequence of target proteins for Akt kinase. From the difference of the mobility between the nonphosphorylated and phosphorylated synthetic peptides on Agarose gel electro-phoresis, the Akt-phosphorylating activity was monitored. The cell-free extract prepared from Streptomyces griseus IFO 13350 and the Akt homologous protein was purified by ammonium sulfate fractionation and many steps of column chromatographies such as, DEAE-Sepharose, Mono Q, Resource Phenyl-Soporose and Gel permeation column chromatographies. As a result, the protein phosphorylating the fluorescien-labeled Akt substrate was identified and it's molecular weight was estimated as 39 kDa on SDS-PAGE.

Anti-inflammatory Effects of an Ethanolic Extract form Betula Platyphylla (화피(樺皮)의 항염(抗炎) 효과(效果)에 관(關)한 연구(硏究))

  • Ryu Mi-Hyun;Park Eun-Kyung;Kim Young-Hoon;Lee Yeon-Ah;Lee Sang-Hoon;Yang Hyung-In;Hong Seung-Jae;Baek Yong-Hyeon;Park Dong-Suk;Han Jung-Soo;Yoo Myung-Chul;Kim Kyoung-Soo
    • The Journal of Korean Medicine
    • /
    • v.27 no.1 s.65
    • /
    • pp.184-195
    • /
    • 2006
  • Objectives : Betula Platyphylla(BP) is a traditional analgesic, anti-fungal, anti-inflammatory herb used in Chinese 1medicine. However, no information is available to explain its action. In this study. we investigated the anti-inflammatory 1effects of BP to elutidate the molecular pharmacological activity in the ethanol extract of BP(BPE). Methods : We performed WTS assay in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages with BPE. Nitrite was measured by Griess assay, prostaglandin E2 (PGE2) by enzyme-linked immunosorbent assay (ELISA) in LPS induced RAW264.7 macrophages with BPE. Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were determined by Western blot. Activation of nuclear factor-kappaB (NF-kB) was measured by electrophoretic mobility shift assay (EMSA). Results : BPE significantly suppressed production of nitric oxide (NO) and PGE2 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. The maximal inhibition rate of NO and PGE2 production by BPE was ca. 88.8% and 93% at the concentration of $100{\mu}g/ml$ (non-cytotoxic concentration), respectively. BPE also decreased iNOS protein and COX-2 protein in LPS-induced RAW264.7 macrophages. EMSA demonstrated that BPE inhibited the DNA binding activity of the NF-kB. Conclusions : These results suggest that BPE inhibits NF-${\kappa}B$-mediated gene expression and downregulates inflammatory mediator production in RAW264.7 macrophages.

  • PDF

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Streptomyces coelicolor 의 Catalase 들의 분석

  • 김형표;이종수;하영칠;노정혜
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 1992
  • Srrepromycec. corlirolar produces at least 4 catalase activity bands with different electrophoretic mobilities on polyacrylamide gel which vary during development. Spores and mycelia at stationary phase produced all the activity bands(Cat1. 760 kr); Cat3-I, 170 kD: Cat3-2, 140 kD: Cat3-3. 130 kD; Cat4, 70 kD) except for Cat2 (300 kD). Mycelia at mid-logarithmic phase produced only Cat2 and Cat3-2 bands, and mycelia at late-logarithmic phase produced bands except Catl and Cat\ulcorner. Catalase-deficient mutants were screened in S. coelicalur by H201 bubbling test following NTG mutagenesis. Wc tested sevcral non-bubbling or slow-bubbling mutants for their catalase activities. The overall activities in cell extracts decreased more than 5 fold. Activity bands in native gel selectively decreased in intensity or disappeared. In all the non-bubbling mutants testcd, Cat3-2 band decreased significantly or disappeared. suggesting that Cat3-2 is the major catalase. The selective disappearance of bands in mutants suggest that each band is governed by different genes. We purified catalase activity from -:ell extracts obtained at late-logarithmic phase. Following chromatographies on Sepharose CL-4B. DEAE Sepharose CL-6B. Phcnyl Sepharose CL-4B. and hydroxylapatite columns. only the Cat3-2 activity was obtained. The native form of Cat3-2 has molecular weight of approximately 140 kD, judged by gel electrophoresis. Thc electrophoretic mobility on SDS-polyactylamide gel suggests that this enzyme contains 2 identical subunits of 67 kD.

  • PDF

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

타원편광분석법을 이용한 $In_xAl_{1-x}P$ 박막의 광물성 연구

  • Byeon, Jun-Seok;Hwang, Sun-Yong;Kim, Tae-Jung;Kim, Yeong-Dong;Aspnes, D.E.;Chang, Y.C.;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.423-423
    • /
    • 2013
  • 3~5 족 반도체 물질인 phosphorus 화합물 중 대표적인 InAlP 삼종화합물은 작은 굴절률, 큰 밴드갭, GaAs와 lattice 일치 때문에 큰 주목을 받고 있고, p-type high electron mobility transistors(p-HEMT), laser diodes 등의 고속 전자소자 및 광전 소자에 응용이 가능한 매우 중요한 물질이다. 최적의 소자 응용기술을 위해서는, 정확한 광물성 연구가 수행되어야 하지만 InxAl1-xP 화합물에 대한 유전율 함수 및 전자전이점 등의 연구는 미흡한 실정이다. 이에 본 연구에서는 1.5~6.0 eV 에너지 영역에서 각기 다른 In 조성비를 갖는 InxAl1-xP 화합물의 가유전율 함수 ${\varepsilon}={\varepsilon}_1+i{\varepsilon}_2$와 전자전이점 데이터를 보고한다. GaAs 기판 위에 molecular beam epitaxy (MBE)를 이용하여 InxAl1-xP (x=0.000, 0.186, 0.310, 0.475, 0.715, 0.831, 1.000) 박막을 성장하였고 타원편광분석기를 이용하여 유전율 함수를 측정하였다. 또한 실시간 화학적 에칭을 통하여 시료 표면에 자연산화막을 제거함으로써 순수한 InAlP의 유전율 함수를 측정할 수 있었고, 측정된 유전율 함수를 이차미분하여 In 조성비에 따른 전자전이점을 얻을 수 있었다. 얻어진 전자전이점 값을 이용하여 linear augmented Slater-type orbital method (LASTO) 를 통해 이론적 전자 밴드 구조 계산을 하였고, 이를 바탕으로 $E_0$, $E_1$, $E_2$ 전이점 지역의 여러 전자전이점($E_1$, $E_1+{\Delta}_1$, $E_0'$, $E_0'+{\Delta}_0'$, $E_2$, $E_2'$)의 특성을 정의할 수 있었고, $E_0'$$E_2$ 전이점의 에너지 값이 In 조성비가 증가함에 따라 서로 교차함을 발견할 수 있었다. 타원 편광 분석법을 이용한 유전율 함수 및 전자전이점 연구는 InAlP의 광학적 데이터베이스를 확보하는 성과와 더불어 새로운 디바이스 기술 및 광통신 산업에도 유용한 정보가 될 것이다.

  • PDF

Tricho-dento-osseous Syndrome Mutant Dlx3 Shows Lower Transactivation Potential but Has Longer Half-life than Wild-type Dlx3

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to play a role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM #190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. The molecular mechanisms that explain the phenotypic characteristics of TDO syndrome have not been clearly determined. In this study, we examined phenotypic characteristics of wild type DLX3(wtDlx3) and 4-BP DEL DLX3 (TDO mtDlx3) in C2C12 cells. To investigate how wtDlx3 and TDO mtDlx3 differentially regulate osteoblastic differentiation, reporter assays were performed by using luciferase reporters containing the promoters of alkaline phosphatase, bone sialoprotein or osteocalcin. Both wtDlx3 and TDO mtDlx3 enhanced significantly all the reporter activities but the effect of mtDlx3 was much weaker than that of wtDlx3. In spite of these differences in reporter activity, electrophoretic mobility shift assay showed that both wtDlx3 and TDO mtDlx3 formed similar amounts of DNA binding complexes with Dlx3 binding consensus sequence or with ALP promoter oligonucleotide bearing the Dlx3 binding core sequence. TDO mtDlx3 exhibits a longer half-life than wtDlx3 and it corresponds to PESTfind analysis result showing that potential PEST sequence was missed in carboxy terminal of TDO mtDlx3. In addition, co-immunoprecipitation demonstrated that TDO mtDlx3 binds to Msx2 more strongly than wtDlx3. Taken together, though TDO mtDlx3 acted as a weaker transcriptional activator than wtDlx3 in osteoblastic cells, there is possibility that during in vivo osteoblast differentiation TDO mtDlx3 may antagonize transcriptional repressor activity of Msx2 more effectively and for longer period than wtDlx3, resulting in enhancement of osteoblast differentiation.

Rheological Behavior of Lyotropilc Solutions of Cellulose in the $NH_3/NH_4SCN$ Solvent System

  • Jo, Jae-Jeong;Cuculo, J.A.;Theil, M.H.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.36-37
    • /
    • 1990
  • In the past, facile dissolution of cellulose has been hampered by the lack of suitable nondegrading solvents. Recently, this problem has been solved in our laboratory by the discovery of an inexpensive, convenient solvent system, that is the mixture of $NH_3\;and\;NH_4SCN$, for cellulose. Also, the $cellulose/NH_3/NH_4SCN$ solution system has been found to form the anisotropic, i.e., liquid crystalline phase. It is believed that both the cholesterio and the nematic phase occur. This finding has prompted extensive on-going researoh on the formation of the liquid crystalline phase from an inexpensive natural source such as cellulose since the nematic phase is envisioned as an excellent precursor sources for products with desirable properties, for example, high modulus and high strength. This interest naturally leads to a desire to understand the theological properties of the nematic phase so that the transformation of the nematic phase to the solid state with desirable properties can be efficiently accomplished, ;From this point of view, the theological behavior of the $cellulose/NH3_/NH_4SCN$ system has been studied as a function of shear rate and shear stress over a wide range of solvent compositions, cellulose concentration, centrifugation and urea contents, Results indicate that the viscosity decreases with increasing shear rate. A marked shear thinning behavior and a quasi-Newtonian behavior were observed in the low shear rate region and in the high shear rate region, respectively for all solvent compositions. The $cellulose/NH_3/NH_4SCN$ solution system only exhibited the viscosity increase with increasing cellulose concentration and failed to show the viscosity drop generally observed at the point of incipience of liquid crystal formation, This may be due to the gel-like nature of the solution by the association of the rodlike molecules into bundles which may serve as crosslinking points giving the cellulose solution a network structure. Also, simply hydrogen bonding may be so restrictive of molecular mobility that a viscosity drop is blocked. In addition to the above results, yield stress and thixotropy were also observed in the $cellulose/NH_3/NB_4SCN$ solution system which are characteristics of liquid crystal and gel, The results of the effect of centrifugation on viscosity show that viscosity decreases by the application of centrifugation. This may be explained by the change of the piled polydomain structure to the dispersed polydomain structure due to the pressure gradient generated during centrifugation.ation.

  • PDF