• Title/Summary/Keyword: molecular map

Search Result 377, Processing Time 0.03 seconds

Molecular approaches for improvement of medicinal and aromatic plants

  • Kumar, Jitendra;Gupta, Pushpendra Kumar
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.93-112
    • /
    • 2008
  • Medicinal and aromatic plants (MAPs) are important sources for plant secondary metabolites, which are important for human healthcare. Improvement of the yield and quality of these natural plant products through conventional breeding is still a challenge. However, recent advances in plant genomics research has generated knowledge leading to a better understanding of the complex genetics and biochemistry involved in biosynthesis of these plant secondary metabolites. This genomics research also concerned identification and isolation of genes involved in different steps of a number of metabolic pathways. Progress has also been made in the development of functional genomics resources (EST databases and micro-arrays) in several medicinal plant species, which offer new opportunities for improvement of genotypes using perfect markers or genetic transformation. This review article presents an overview of the recent developments and future possibilities in genetics and genomics of MAP species including use of transgenic approach for their improvement.

Motional Properties in the Structure of GlcNAc(β1,3)Gal(β)OMe Studied by NMR Spectroscopy and Molecular Modeling

  • 심규창;이상원;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.415-424
    • /
    • 1997
  • Conformational flexibilities of the GlcNAc(β1,3)Gal(β)OMe are investigated through NMR spectroscopy and molecular modeling. Adiabatic energy map generated with a dielectric constant of 50 contains three local minima. All of the molecular dynamics simulations on three local minimum energy structures show fluctuations between two low energy structures, N2 at φ=80° and ψ=60° and N3 at φ=60° and ψ=-40°. We have presented adequate evidences to state that GlcNAc(β1,3)Gal(β)OMe exists in two conformationally discrete forms. Two state model of N2 and N3 conformers with a population ratio of 40:60 is used to calculate the effective cross relaxation rate and reproduces the experimental NOEs very well. Molecular dynamics simulation in conjunction with two state model proves successfully the dynamic equilibrium existed in GlcNAc(β1,3)Gal(β)OMe and can be considered as a powerful method to analyze the motional properties in the structure of carbohydrate. This observation also cautions against the indiscriminate use of a rigid model to analyze NMR data.

Anti-inflammatory and Anti-allergic Effects of Herbal Extracts on Atopic Dermatitis ( Part II ) (약용식물 추출물의 아토피성 피부염에 대한 항염증 및 항알레르기 효과 (제 2 보))

  • Rang, Moon-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.173-182
    • /
    • 2013
  • Atopic dermatitis is a chronic, relapsing inflammatory skin disease associated with dysfunction of skin barrier and cutaneous hyper-reactivity to environmental triggers. In the previous study, cytotoxicity, antioxidant, anti-inflammatory and anti-allergic activities were investigated for various herbal extracts such as Aloe vera L. (AV), Viola mandshurica W. Becker (VM), Punica granatum L. (PG), and Dendrobium nobile L. (DN) in order to develop effective therapeutic herbal extracts for atopic dermatitis, In this study, anti-inflammatory activities of these herb extracts in lipopolysaccharide (LPS)-induced macrophage RAW264.7 cells were further examined to find the underlying molecular mechanisms. The RT-PCR (reverse transcription polymerase chain reaction) analysis showed that PG, DN and AV inhibited effectively the gene expression of pro-inflammatory cytokines IL-6 and IL-$1{\beta}$ in LPS-stimulated macrophages, while VM did not. The transfection and luciferase analysis exhibited that all herbal extracts hindered the activation of transcription nuclear factor kappa B (NF-${\kappa}B$). The western blot analysis indicated that AV blocked the activation of only JNK MAP (c-Jun N-terminal kinase mitogen-activated protein) kinase not p38 MAP kinase, while VM, PG and DN did not show the activation of both JNK and p38 MAP kinases. These results suggest that AV, VM, PG, and DN have anti-inflammatory activities and thus have the potential to reduce and alleviate the symptoms of atopic dermatitis.

Recent Advances in Sheep Genome Mapping

  • Crawford, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1129-1134
    • /
    • 1999
  • The rapid development of the sheep genetic linkage map over the last five years has given us the ability to follow the inheritance of chromosomal regions. Initially this powerful resource was used to find markers linked to monogenic traits but there is now increasing interest in using the genetic linkage map to define the complex of genes that control multigenic production traits. Of particular interest are those production traits that are difficult to measure and select for using classical quantitative genetic approaches. These include resistance to disease where a disease challenge (necessary for selection) poses too much risk to valuable stud animals and meat and carcass qualities which can be measured only after the animal has been slaughtered. The goal for the new millennium will be to fully characterise the genetic basis of multigenic production traits. The genetic linkage map is a vital tool required to achieve this.

Cytotoxic and Apoptotic Effects of Echinomycin on Murine Leukemia Cells

  • Kim, Tae-Ue;Yang, Se-Hwan;Kim, Soo-Kie
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.489-492
    • /
    • 1996
  • A number of anticancer-chemotherapeutic agents induce cell death through the process of apoptosis. Effects of echinomycin, an anticancer agent on cancer progression, were investigated in P388 murine leukemia cells. First, according to the results of cytotoxicity measurement. $IC_{50}$ of echinomycin was 1.12 nM, a relatively lower value than the other examined anticancer agents, mitomycin-C and etoposide Second, the DNA fragmentation assay for echinomycin-treated cells exhibited that echinomycin was able to induce apoptosis in a shorter period of time and with a lower dose than mitomycin-C or etoposide. The data of DNA fragmentation were quite comparable to those of cytotoxicity measurement. Finally we showed that mitogen-activated protein (MAP) kinase, a key protein in cell mitosis, was translocated into the nucleus from the cytosol after treatment with echinomycin. These findings suggest that a MAP kinase-related process may be involved in apoptosis induced by echinomycin.

  • PDF

Development of an Apple F1 Segregating Population Genetic Linkage Map Using Genotyping-By-Sequencing

  • Ban, Seung Hyun;Choi, Cheol
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.434-443
    • /
    • 2018
  • Genotyping-by-sequencing (GBS) has been used as a viable single nucleotide polymorphism (SNP) validation method that provides reduced representation sequencing by using restriction endonucleases. Although GBS makes it possible to perform marker discovery and genotyping simultaneously with reasonable costs and a simple molecular biology workflow, the standard TASSEL-GBS pipeline was designed for homozygous groups, and genotyping of heterozygous groups is more complicated. To addresses this problem, we developed a GBS pipeline for heterozygous groups that called KNU-GBS pipeline, specifically for apple (Malus domestica). Using KNU-GBS pipeline, we constructed a genetic linkage map consisting of 1,053 SNP markers distributed over 17 linkage groups encompassing a total of 1350.1 cM. The novel GBS pipeline for heterozygous groups will be useful for marker-assisted breeding programs, and diverse heterozygous genome analyses.

A Genetic Linkage Map of Soybean with RFLP, RAPD, SSR and Morphological Markers

  • Kim, Hong-Sik;Lee, Suk-Ha;Lee, Yeong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.123-127
    • /
    • 2000
  • The objective of this study was to develop a linkage map of soybean under the genetic background of Korean soybean. A set of 89 F/sub 5/ lines was developed from a cross between 'Pureunkong', which was released for soy-bean sprout, and 'Jinpumkong 2', which had no beany taste in seed due to lack of lipoxygenase 1, 2, and 3. A linkage map was constructed for this population with a set of 113 genetic markers including 7 restriction fragment length polymorphism (RFLP) markers, 79 randomly amplified polymorphic DNA (RAPD) markers, 24 simple sequence repeat(SSR) markers, and 3 morphological markers. The map defined approximately 807.4 cM of the soybean genome comprising 25 linkage groups with 98 polymorphic markers. Fifteen markers remained unlinked. Seventeen linkage groups identified here could be assigned to the respective 13 linkage groups in the USDA soybean genetic map. RFLP and SSR markers segregated at only single genetic loci. Fourteen of the 25 linkage groups contained at least one SSR marker locus. Map positions of most of the SSR loci and their linkages with RFLP markers were consistent with previous reports of the USDA soybean linkage groups. For RAPD, banding patterns of 13 decamer primers showed independent segregations at two or more marker loci for each primer. Only the segregation at op Y07 locus was expressed with codominant manner among all RAPD loci. As the soybean genetic map in our study is more updated, molecular approaches of agronomically important genes would be useful to improve Korean soybean improvement.

  • PDF

Syntheses, X-ray Structures and Second Harmonic Generation Efficiencies of MAP (Methyl (2,4-dinitrophenyl)-aminopropanoate) Analogues

  • Lee Joo-Hee;Kim Kimoon;Kim Jong-Hyun;Kim Jong-Jean
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.268-274
    • /
    • 1992
  • An attempt to improve the second harmonic generation (SHG) efficiency of MAP (methyl (2,4-dinitrophenyl)aminopropanoate) by modifying the substituents on the amino group of MAP is described. Several MAP analogues have been prepared using optically active amino acids alanine, phenylalanine and serine, and their SHG efficiencies measured. None of the MAP analogues exhibited SHG efficiencies as high as that of MAP. X-ray crystal structures of three MAP analogues have been determined. In the crystal structures of two of them, which were the derivatives of phenylalanine, two crystallographically-independent molecules existing in the asymmetric unit are aligned almost antiparallel. These structures are consistent with the very low SHG efficiencies of these compounds. On the other hand, the crystal structure of a serine derivative reveals substantial alignment of the dinitroaniline chromophore along the polar axis. However, the angle of 86.2° between the molecular charge tranfer axis and the polar axis of the crystal is still far away from the optimum value of 54.74° for the phase-matchable SHG. The structure is consistent with the SHG efficiency of this compound which is much higher than those of the phenylalanine derivatives but still lower than that of MAP. This study demonstrates the importance of the orientation of molecules in the crystal lattice in determining secod-order nonlinear optical properties of crystalline materials.

Reverse Random Amplified Microsatellite Polymorphism Reveals Enhanced Polymorphisms in the 3' End of Simple Sequence Repeats in the Pepper Genome

  • Min, Woong-Ki;Han, Jung-Heon;Kang, Won-Hee;Lee, Heung-Ryul;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.250-257
    • /
    • 2008
  • Microsatellites or simple sequence repeats (SSR) are widely distributed in eukaryotic genomes and are informative genetic markers. Despite many advantages of SSR markers such as a high degree of allelic polymorphisms, co-dominant inheritance, multi-allelism, and genome-wide coverage in various plant species, they also have shortcomings such as low polymorphic rates between genetically close lines, especially in Capsicum annuum. We developed an alternative technique to SSR by normalizing and alternating anchored primers in random amplified microsatellite polymorphisms (RAMP). This technique, designated reverse random amplified microsatellite polymorphism (rRAMP), allows the detection of nucleotide variation in the 3' region flanking an SSR using normalized anchored and random primer combinations. The reproducibility and frequency of polymorphic loci in rRAMP was vigorously enhanced by translocation of the 5' anchor of repeat sequences to the 3' end position and selective use of moderate arbitrary primers. In our study, the PCR banding pattern of rRAMP was highly dependent on the frequency of repeat motifs and primer combinations with random primers. Linkage analysis showed that rRAMP markers were well scattered on an intra-specific pepper map. Based on these results, we suggest that this technique is useful for studying genetic diversity, molecular fingerprinting, and rapidly constructing molecular maps for diverse plant species.

Quantitative Profiling of Dual Phosphorylation of Fus3 MAP Kinase in Saccharomyces cerevisiae

  • Hur, Jae-Young;Kang, Gum-Yong;Choi, Min-Yeon;Jung, Jin Woo;Kim, Kwang-Pyo;Park, Sang-Hyun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Mitogen-activated protein kinase (MAPK) signaling is a crucial component of eukaryotic cells; it plays an important role in responses to extracelluar stimuli and in the regulation of various cellular activities. The signaling cascade is evolutionarily conserved in the eukaryotic kingdom from yeast to human. In response to a variety of extracellular signals, MAPK activity is known to be regulated via phosphorylation of a conserved $T{\times}Y$ motif at the activation loop in which both threonine and tyrosine residues are phosphorylated by the upstream kinase. However, the mechanism by which both residues are phosphorylated continues to remain elusive. In the budding yeast, Saccharomyces cerevisiae, Fus3 MAPK is involved in the mating signaling pathway. In order to elucidate the functional mechanism of MAPK activation, we quantitatively profiled phosphorylation of the $T{\times}Y$ motif in Fus3 using mass spectrometry (MS). We used synthetic heavy stable isotope-labeled phosphopeptides and nonphosphopeptides corresponding to the proteolytic $T{\times}Y$ motif of Fus3 and accompanying data-dependent tandem MS to quantitatively monitor dynamic changes in the phosphorylation events of MAPK. Phosphospecific immunoblotting and the MS data suggested that the tyrosine residue is dynamically phosphorylated upon stimulation and that this leads to dual phosphorylation. In contrast, the magnitude of threonine phosphorylation did not change significantly. However, the absence of a threonine residue leads to hyperphosphorylation of the tyrosine residue in the unstimulated condition, suggesting that the threonine residue contributes to the control of signaling noise.