• Title/Summary/Keyword: molecular interactions

Search Result 927, Processing Time 0.028 seconds

Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis

  • Lee, Yong-Woo;Kim, Paul H.;Lee, Won-Hee;Hirani, Anjali A.
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2010
  • The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.

The Expression Patterns of Connexin Isoforms in the Rat Caput Epididymis During Postnatal Development

  • Han, Su-Yong;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Intercellular interactions are important for the proper development and regulation of tissue function. This is especially necessary in the epididymis, a part of male reproductive tract where sperm become mature and acquire their fertilizing capacity. The caput region of the epididymis consists of several types of cells, including principal, basal, and apical cells. Direct intercellular communication is thus required to precisely regulate the functions of the caput epididymis. In this regard, connexin (Cx) is a molecule that forms channels, which allow the direct exchange of small molecules between cells, enabling intercellular communication. In this study, the expression of Cx isoforms in the caput epididymis at different postnatal ages was determined by using quantitative real-time polymerase chain reaction analysis. Nine of 13 Cx isoforms were detected. The transcript levels of Cx30.3, 31, 31.1, 32, and 40 were highest at 45 days of age, while the expression of Cx43 and 45 gradually decreased with age. A substantial fluctuation of Cx26 expression was detected, with significant decreases before and during puberty, followed by a transient increase at adult-hood and rapid decreases at an old age. A significant increase in Cx37 transcript was observed at 25 days of age, followed by gradual decreases at adult and old ages. These results indicate the significant differential expression of various Cx isoforms in the caput epididymis during postnatal development. It further suggests that the functional regulation and developmental maturation of the caput epididymis are highly related to the postnatal age-related differential expression of Cx isoforms.

Apoptosis inhibitor 5 increases metastasis via Erk-mediated MMP expression

  • Song, Kwon-Ho;Kim, Seok-Ho;Noh, Kyung Hee;Bae, Hyun Cheol;Kim, Jin Hee;Lee, Hyo-Jung;Song, Jinhoi;Kang, Tae Heung;Kim, Dong-Wan;Oh, Se-Jin;Jeon, Ju-Hong;Kim, Tae Woo
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 2015
  • Apoptosis inhibitor 5 (API5) has recently been identified as a tumor metastasis-regulating gene in cervical cancer cells.However, the precise mechanism of action for API5 is poorly understood. Here, we show that API5 increases the metastatic capacity of cervical cancer cells in vitro and in vivo via up-regulation of MMP-9. Interestingly, API5-mediated metastasis was strongly dependent on the Erk signaling pathway. Conversely, knock-down of API5 via siRNA technology decreased the level of phospho-Erk, the activity of the MMPs, in vitro invasion, and in vivo pulmonary metastasis. Moreover, the Erk-mediated metastatic action was abolished by the mutation of leucine into arginine within the heptad leucine repeat region, which affects protein-protein interactions. Thus, API5 increases the metastatic capacity of tumor cells by up-regulating MMP levels via activation of the Erk signaling pathway. [BMB Reports 2015; 48(6): 330-335]

Contribution of Hydrophobic Interactions to HubWA Folding Reaction (소수성 상호작용이 HubWA 단백질의 폴딩 반응에 끼치는 영향)

  • Park, Soon-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • The role of hydrophobic residues on protein folding reaction was studied by folding kinetics measurements in conjunction with protein engineering. The HubWA, which was derived from human ubiquitin by mutating the residues at 45 (Phe to Trp) and 26 (Val to Ala), was used as a mutational background. Fourteen hydrophobic residues were mutated to alanine. Among fourteen variants generated, only four variant proteins (V5A, I13A, V17A, and I36A) were suitable for folding study. The folding kinetics of these variants was measured by stopped-flow fluorescence spectroscopy. The folding kinetics of HubWA and V17A was observed to follow a three-state on-pathway mechanism. On the other hand, folding kinetics of V5A, I13A, and I36A was observed to follow a two-state mechanism. Based on these observations, transition of protein folding reaction from collision-diffusion mechanism to nucleation-condensation mechanism was discussed.

Comparative Reverse Screening Approach to Identify Potential Anti-neoplastic Targets of Saffron Functional Components and Binding Mode

  • Bhattacharjee, Biplab;Vijayasarathy, Sandhya;Karunakar, Prashantha;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5605-5611
    • /
    • 2012
  • Background: In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. Methods: In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. Results: The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. Conclusion: This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.

The Complexes of Fluorobenzene with Halogens and Interhalogens in Carbon Tetrachloride (플루오로벤젠과 할로겐 또는 할로겐間化合物 사이의 錯物에 관한 연구)

  • Choi, Sang-Up;Han, Bong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.89-93
    • /
    • 1967
  • The interactions of fluorobenzene with iodine monochloride, iodine monobromide, bromine and chlorine in carbon tetrachloride solution have been examined through ultraviolet spectrophotometric measurements. The results indicate the formation of one to one molecular complexes, $C_6H_5F{\cdot}ICl$, $C_6H_5F{\cdot}IBr$, $C_6H_5F{\cdot}Br_2$, and $C_6H_5F{\cdot}Cl_2$ in solution. The equilibrium constants obtained at room temperature for the formation of these four complexes are 0.161, 0.072, 0.045 and 0.035 l $mole^{-1}$, respectively. Comparison of these results with those reported in the literature on other complexes of similar type reveals that the relative stabilities of these complexes decrease in the following orders: ICl>IBr>$I_2$>$Br_2$>$Cl_2$ $C_6H_6$>$C_6H_5Br$>$C_6H_5Cl$>$C_6H_5F$

  • PDF

The Complexes of Iodobenzene with Halogens and Interhalogens in Carbon Tetrachloride (요오드벤젠과 할로겐 또는 할로겐間化合物 사이의 錯物에 관한 연구)

  • Choi, Sang-Up;Kim, Eung-Ryul
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.94-99
    • /
    • 1967
  • The interactions of iodobenzene with iodine, iodine monobromide, iodine monochloride and chlorine in carbon tetrachloride solution have been investigated by means of ultraviolet spectrophotometric measurements. The results reveal the formation of one to one molecular complexes, $C_6H_5I{\cdot}I_2$, $C_6H_5I{\cdot}IBr$, $C_6H_5I{\cdot}ICl$, and $C_6H_5I{\cdot}Cl_2$, in solution. The equilibrium constants obtained at room temperature (about $21^{\circ}C$) for the formation of these four complexes are 0.23, 0.73, 1.2 and 0.070 l $mole^{-1}$, respectively. Comparison of these results with those reported in the literature on other complexes of similar type indicates that the relative stabilities of these complexes decrease in the following orders: ICl>IBr>$I_2$>$Br_2$>$Cl_2$ $C_6H_5I$>$C_6H_6$>$C_6H_5Br$>$C_6H_5Cl$>$C_6H_5F$.

  • PDF

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • v.22
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

Structural and Biochemical Studies Reveal a Putative FtsZ Recognition Site on the Z-ring Stabilizer ZapD

  • Choi, Hwajung;Min, Kyungjin;Mikami, Bunzo;Yoon, Hye-Jin;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.814-820
    • /
    • 2016
  • FtsZ, a tubulin homologue, is an essential protein of the Z-ring assembly in bacterial cell division. It consists of two domains, the N-terminal and C-terminal core domains, and has a conserved C-terminal tail region. Lateral interactions between FtsZ protofilaments and several Z-ring associated proteins (Zaps) are necessary for modulating Z-ring formation. ZapD, one of the positive regulators of Z-ring assembly, directly binds to the C-terminal tail of FtsZ and promotes stable Z-ring formation during cytokinesis. To gain structural and functional insights into how ZapD interacts with the C-terminal tail of FtsZ, we solved two crystal structures of ZapD proteins from Salmonella typhimurium (StZapD) and Escherichia coli (EcZapD) at a 2.6 and $3.1{\AA}$ resolution, respectively. Several conserved residues are clustered on the concave sides of the StZapD and EcZapD dimers, the suggested FtsZ binding site. Modeled structures of EcZapD-EcFtsZ and subsequent binding studies using bio-layer interferometry also identified the EcFtsZ binding site on EcZapD. The structural insights and the results of bio-layer interferometry assays suggest that the two FtsZ binding sites of ZapD dimer might be responsible for the binding of ZapD dimer to two protofilaments to hold them together.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • Man, Min-Tan;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF