• 제목/요약/키워드: molecular genetics

검색결과 1,420건 처리시간 0.036초

Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology

  • Esmatabadi, Mohammad javad Dehghan;Bozorgmehr, Ali;zadeh, Hesam Motaleb;Bodaghabadi, Narges;Farhangi, Baharak;Babashah, Sadegh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7409-7414
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.

MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6

  • Han, Xiaoqing;Luan, Tao;Sun, Yingying;Yan, Wenyi;Wang, Dake;Zeng, Xianlu
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.793-803
    • /
    • 2020
  • Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.

Taxonomic Characterization, Evaluation of Toxigenicity, and Saccharification Capability of Aspergillus Section Flavi Isolates from Korean Traditional Wheat-Based Fermentation Starter Nuruk

  • Bal, Jyotiranjan;Yun, Suk-Hyun;Chun, Jeesun;Kim, Beom-Tae;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제44권3호
    • /
    • pp.155-161
    • /
    • 2016
  • The most economically important species used in a wide range of fermentation industries throughout Asia belong to Aspergillus section Flavi, which are morphologically and phylogenetically indistinguishable, with a few being toxigenic and therefore a major concern. They are frequently isolated from Korean fermentation starters, such as nuruk and meju. The growing popularity of traditional Korean alcoholic beverages has led to a demand for their quality enhancement, therefore requiring selection of efficient non-toxigenic strains to assist effective fermentation. This study was performed to classify the most efficient strains of Aspergillus section Flavi isolated from various types of traditional wheat nuruk, based on a polyphasic approach involving molecular and biochemical evaluation. A total of 69 strains were isolated based on colony morphology and identified as Aspergillus oryzae/flavus based on internal transcribed spacer and calmodulin gene sequencing. Interestingly, none were toxigenic based on PCR amplification of intergenic regions of the aflatoxin cluster genes norB-cypA and the absence of aflatoxin in the culture supernatants by thin-layer chromatography analysis. Saccharification capability of the isolates, assessed through ${\alpha}-amylase$ and glucoamylase activities, revealed that two isolates, TNA24 and TNA15, showed the highest levels of activity. Although the degrees of variation in ${\alpha}-amylase$ and glucoamylase activities among the isolates were higher, there were only slight differences in acid protease activity among the isolates with two, TNA28 and TNA36, showing the highest activities. Furthermore, statistical analyses showed that ${\alpha}-amylase$ activity was positively correlated with glucoamylase activity (p < 0.001), and therefore screening for either was sufficient to predict the saccharifying capacity of the Aspergillus strain.

유방암과 CCND1, ESR1, CDK7 유전자 다형성의 상호작용; 로지스틱 회귀분석과 multifactor dimensionality reduction(MDR)의 분석 비교 (Gene-gene interaction of CCND1, ESR1 and CDK7 on the risk of breast cancer detected by multifactor dimensionality reduction and logistic regression)

  • 최지엽;;;이경무;노동영;유근영;;강대희
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 2004년도 제56차 추계 학술대회 연제집
    • /
    • pp.40.1-40.1
    • /
    • 2004
  • PDF