Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2307

MicroRNA 449c Mediates the Generation of Monocytic Myeloid-Derived Suppressor Cells by Targeting STAT6  

Han, Xiaoqing (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Luan, Tao (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Sun, Yingying (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Yan, Wenyi (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Wang, Dake (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Zeng, Xianlu (The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University)
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.
Keywords
C-X-C motif chemokine receptor 2; differentiation; microRNA 449c; mo-MDSCs; STAT6;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Halliday, G.M. and Le, S. (2001). Transforming growth factor-beta produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int. Immunol. 13, 1147-1154.   DOI
2 Han, X., Shi, H., Sun, Y., Shang, C., Luan, T., Wang, D., Ba, X., and Zeng, X. (2019). CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3. Cell Death Dis. 10, 598.   DOI
3 Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., Lehner, F., Manns, M.P., Greten, T.F., and Korangy, F. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50, 799-807.   DOI
4 Hong, S.H., Kim, K.S., and Oh, I.H. (2015). Concise review: exploring miRNAs--toward a better understanding of hematopoiesis. Stem Cells 33, 1-7.   DOI
5 Jayakumar, A. and Bothwell, A. (2017). Stat6 promotes intestinal tumorigenesis in a mouse model of adenomatous polyposis by expansion of MDSCs and inhibition of cytotoxic CD8 response. Neoplasia 19, 595-605.   DOI
6 Jing, H., Vassiliou, E., and Ganea, D. (2003). Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J. Leukoc. Biol. 74, 868-879.   DOI
7 Kim, M., Civin, C.I., and Kingsbury, T.J. (2019). MicroRNAs as regulators and effectors of hematopoietic transcription factors. Wiley Interdiscip. Rev. RNA 10, e1537.
8 Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., Golshayan, A., Rayman, P.A., Wood, L., Garciaet, L., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148-2157.   DOI
9 Leon-Cabrera, S.A., Molina-Guzman, E., Delgado-Ramirez, Y.G., VázquezSandoval, A., Ledesma-Soto, Y., Pérez-Plasencia, C.G., Chirino, Y.I., DelgadoBuenrostro, N.L., Rodríguez-Sosa, M., Vaca-Paniagua, F., et al. (2017). Lack of STAT6 attenuates inflammation and drives protection against early steps of colitis-associated colon cancer. Cancer Immunol. Res. 5, 385-396.   DOI
10 Majumder, M., Landman, E., Liu, L., Hess, D., and Lala, P.K. (2015). COX2 elevates oncogenic miR-526b in breast cancer by EP4 activation. Mol. Cancer Res. 13, 1022-1033.   DOI
11 Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., et al. (2010). Tumor- induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32, 790-802.   DOI
12 Miao, L.J., Huang, S.F., Sun, Z.T., Gao, Z.Y., Zhang, R.X., Liu, Y., and Wang, J. (2013). MiR-449c targets c-Myc and inhibits NSCLC cell progression. FEBS Lett. 587, 1359-1365.   DOI
13 Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., Baetselier, P.D., and Ginderachter J.A. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233-4244.   DOI
14 Munera, V., Popovic, P.J., Bryk, J., Pribis, J., Caba, D., Matta, B.M., Zenati, M., and Ochoa, J.B. (2010). Stat 6-dependent induction of myeloid derived suppressor cells after physical injury regulates nitric oxide response to endotoxin. Ann. Surg. 251, 120-126.   DOI
15 Nagaraj, S. and Gabrilovich, D.I. (2010). Myeloid-derived suppressor cells in human cancer. Cancer J. 16, 348-353.   DOI
16 Ostrand-Rosenberg, S. and Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499-4506.   DOI
17 Roth, F., De La Fuente, A.C., Vella, J.L., Zoso, A., Inverardi, L., and Serafini, P. (2012). Aptamer-mediated blockade of IL4Ralpha triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72, 1373-1383.   DOI
18 Poh, T.W., Bradley, J.M., Mukherjee, P., and Gendler, S.J. (2009). Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid-derived suppressor cells from the bone marrow. Cancer Res. 69, 3554-3562.   DOI
19 Raber, P.L., Thevenot, P., Sierra, R., Wyczechowska, D., Halle, D., Cheng, P.Y., Villagra, A., Antonia, S., McCaffrey, J.C., Fishman, M., et al. (2014). Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int. J. Cancer 134, 2853-2864.   DOI
20 Ren, X., Bai, X., Zhang, X., Li, Z., Tang, L., Zhao, Y.X., Li, Z.Y., Ren, Y.F., Wei, S.C., Wang, Q.S., et al. (2015). Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics 14, 316-328.   DOI
21 Saki, N., Abroun, S., Soleimani, M., Hajizamani, S., Shahjahani, M., Kast, R.E., and Mortazavi, Y. (2015). Involvement of microRNA in T- cell differentiation and malignancy. Int. J. Hematol. Oncol. Stem Cell Res. 9, 33-49.
22 Sandbothe, M., Buurman, R., Reich, N., Greiwe, L., Vajen B., Gürlevik, E., Schäffer, V., Eilers, M., Kühnel, F., Vaquero, A., et al. (2017). The microRNA-449 family inhibits TGF-beta-mediated liver cancer cell migration by targeting SOX4. J. Hepatol. 66, 1012-1021.   DOI
23 Shi, H., Han, X., Sun, Y., Shang, C., Wei, M., Ba, X., and Zeng, X. (2018). Chemokine (C-X-C motif) ligand 1 and CXCL2 produced by tumor promote the generation of monocytic myeloid-derived suppressor cells. Cancer Sci. 109, 3826-3839.   DOI
24 Ye, X.Z., Yu, S.C., and Bian, X.W. (2010). Contribution of myeloid- derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J. Genet. Genomics 37, 423- 430.   DOI
25 Wang, J., De Veirman, K., De Beule, N., Maes, K., De Bruyne, E., Vanderkerken, K., and Menu, E. (2015). The bone marrow microenvironment enhances multiple myeloma progression by exosomemediated activation of myeloid-derived suppressor cells. Oncotarget 6,43992-44004.   DOI
26 Wang, J., Su, X., Yang, L., Qiao, F., Fang, Y., Fang, F., Yu, L., Yang, Q., Wang, Y.Y., Yin, Y.F., et al. (2016). The influence of myeloid- derived suppressor cells on angiogenesis and tumor growth after cancer surgery. Int. J. Cancer 138, 2688-2699.   DOI
27 Wu, J., Bao, J., Kim, M., Yuan, S., Tang, C., Zheng, H., Mastick, G.S., Xu, C., and Yan, W. (2014). Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 111, E2851-E2857.   DOI
28 Youn, J.I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., Villagra, A., Antonia, S., McCaffrey, J.C., Fishmanet, M., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol. 14, 211-220.   DOI
29 Zang, W., Wang, Y., Wang, T., Du, Y., Chen, X., Li, M., and Zhao, G.Q. (2015). miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer. Mol. Cancer 14, 37.   DOI
30 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI
31 Chomarat, P., Banchereau, J., Davoust, J., and Palucka, A.K. (2000). IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 1, 510-514.   DOI
32 Chatterjee, S., Das, S., Chakraborty, P., Manna, A., Chatterjee, M., and Choudhuri, S.K. (2013). Myeloid derived suppressor cells (MDSCs) can induce the generation of Th17 response from naive CD4+ T cells. Immunobiology 218, 718-724.   DOI
33 Chen, S., Zhang, Y., Kuzel, T.M., and Zhang, B. (2015). Regulating tumor myeloid-derived suppressor cells by microRNAs. Cancer Cell Microenviron. 2, e637.
34 Chen, X., Wang, A., and Yue, X. (2018). miR-449c inhibits migration and invasion of gastric cancer cells by targeting PFKFB3. Oncol. Lett. 16, 417-424.
35 Condamine, T., Mastio, J., and Gabrilovich, D.I. (2015). Transcriptional regulation of myeloid-derived suppressor cells. J. Leukoc. Biol. 98, 913-922.   DOI
36 De Tullio, G., De Fazio, V., Sgherza, N., Minoia, C., Serrati, S., Merchionne, F., Loseto, G., Iacobazzi, A., Rana, A., Petrillo, P., et al. (2014). Challenges and opportunities of microRNAs in lymphomas. Molecules 19, 14723-14781.   DOI
37 El Gazzar, M. (2014). microRNAs as potential regulators of myeloidderived suppressor cell expansion. Innate Immun. 20, 227-38.   DOI
38 Friedman, A.D. (2015). C/EBPalpha in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330-341.   DOI
39 Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268.   DOI
40 Goddard, S., Youster, J., Morgan, E., and Adams, D.H. (2004). Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am. J. Pathol. 164, 511-519.   DOI