• Title/Summary/Keyword: molecular electronics

Search Result 267, Processing Time 0.033 seconds

Molecular Dynamics Simulations of Nanomemory Element Based on Boron Nitride Nanotube-to-peapod Transition

  • Hwang Ho Jung;Kang Jeong Won;Byun Ki Ryang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • We investigated a nonvolatile nanomemory element based on boron nitride nanopeapods using molecular dynamics simulations. The studied system was composed of two boron-nitride nanotubes filled Cu electrodes and fully ionized endo-fullerenes. The two boron-nitride nanotubes were placed face to face and the endo-fullerenes came and went between the two boron-nitride nanotubes under alternatively applied force fields. Since the endo-fullerenes encapsulated in the boron-nitride nanotubes hardly escape from the boron-nitride nanotubes, the studied system can be considered to be a nonvolatile memory device. The minimum potential energies of the memory element were found near the fullerenes attached copper electrodes and the activation energy barrier was $3{\cdot}579 eV$. Several switching processes were investigated for external force fields using molecular dynamics simulations. The bit flips were achieved from the external force field of above $3.579 eV/{\AA}$.

Molecular Dynamics and Quantum Chemical Molecular Dynamics Simulations for the Design of MgO Protecting Layer in Plasma Display Panel

  • Kubo, Momoji;Serizawa, Kazumi;Kikuchi, Hiromi;Suzuki, Ai;Koyama, Michihisa;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kajiyama, Hiroshi;Shinoda, Tsutae;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1049-1052
    • /
    • 2008
  • We developed novel molecular dynamics and quantum chemical molecular dynamics simulators for the design of MgO protecting layer in plasma display panel. These simulators were applied to the investigations on the destruction processes of the MgO protecting layer as well as the evaluation of its second electron emission ability. From the simulation results, we successfully proposed new guidelines for MgO protecting layer with high durability and high second electron emission ability.

  • PDF

Origin of Multiple Conductance Peaks in Single-Molecule Junction Experiments

  • Park, Min Kyu;Kim, Hu Sung;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.654-654
    • /
    • 2013
  • One of the most important yet unresolved problems in molecular electronics is the controversy over the number and nature of multiple conductance peaks in single-molecule junctions. Currently, there are three competing explanations of this observation: (1) manifestation of different molecule-electrode contact geometries, (2) formation of gauche defects within the molecular core, (3) involvement of different electrode surface orientations [1]. However, the exact origin of multiple conductance peaks is not yet fully understood, which indicates our incomplete understanding of the scientifically as well as techno-logically important organic-metal contacts. To theoretically resolve this problem, we previously applied a multiscale computational approach that combines force fields molecular dynamics (FF MD), density functional theory (DFT), and matrix Green's function (MGF) calculations [2] to a thermally fluctuating haxanedithiol (C6DT) molecule stretched between flat Au(111) electrodes, but could observe only a single conductance peak [3]. In this presentation, using DFT geometry optimizations and MGF calculations, we consider molecular junctions with more realistic molecule-metal contact conformations and Au(111) electrode surface directions. We also conduct DFT-based molecular dynamics for the highly stretched junction models to confirm our conclusion. We conclude that the S-Au coordination number should be the more dominant factor than the electrode surface orientation.

  • PDF

Molecular dynamics simulation of ultra-low energy ion implantation for GSI device technology development (GSI소자 개발을 위한 극 저 에너지 이온 주입에 대한 분자 역학 시뮬레이션)

  • 강정원;손명식;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.18-27
    • /
    • 1998
  • Molecular dynamicsinvestigations of ion implantation considering point defect generation were performed with ion energies in the range of ~1keV, Simulation starts perfect diamond cubic lattice site. Stillinger-Weber potential and ZBL potential were used to calculate forces between atoms. We have simulated slowing-down of ion velocity, ion trajectory and coupled-coing between ion and silicon. We also discussed distribution of point defect using rdial distribution function. We found that interstitial produced by ion bombardment mainly formed interstitial cluster.

  • PDF

Functional Polymers with Controlled Molecular Architecture: Design, Synthesis and Applications

  • Frechet Jean M.J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.1-2
    • /
    • 2006
  • Polymer architecture plays a great role in determining the properties of functional polymers. This lecture will explore the design and the synthesis of polymers with controlled architecture and functionality. Especially featured will be star and dendritic architectures where the functional group placement and the molecular shape can be controlled. This will be followed by examples of applications illustrated with a few model systems of functional polymers designed for use in areas such as organic electronics, catalysis, surface patterning, separation and molecular recognition, and polymer therapeutics.

  • PDF

Conductance Difference of Single Molecular Junctions between Experiments and Computational Simulations

  • Choi, Ji Il;Kim, Hu Sung;Kim, Young-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.184.2-184.2
    • /
    • 2014
  • Recent advances in the synthesis and characterization of nanoscale objects provided us with the atomistic understanding of charge transport through single molecular junctions. The representative examples are the mechanically controlled break junction technique and STM or conducting AFM junction techniques. Theoretical studies have been reported on the dependence of electronic charge transport on the geometry of molecule-electrode contacts, the critical element toward the realization of molecular electronics. In this report, we will clarify the puzzling discrepancies between theoretical predictions and experiments.

  • PDF

Effect of Complex with Metal Ions of G4-48PyA Dendrimer Thin Films (G4-48PyA 덴드리머 박막의 금속이온 착체 효과)

  • Jung, S.B.;Yoo, S.Y.;Park, E.;Kim, C.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.131-133
    • /
    • 2001
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a G4-48PyA dendrimer LB films containing 48 pyridinealdoxime functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. And we have studied the electrical properties of the ultra-thin dendrimer LB films. The electrical properties of the ultra-thin dendrimer LB films were investigated by studying the current-voltage characteristics of metal/dendrimer LB films/metal (MIM) structure. And rectifying behavior of the devices was occurred in applied field.

  • PDF

High-Power Conversion Efficiency of Photovoltaic Cells Fabricated with a Small-molecular and Polymer Donating Blend Layer

  • Kim, Ji-Heon;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.48-52
    • /
    • 2014
  • A photovoltaic cell of CuPc:P3HT:PCBM was introduced to extend the light absorption in the visible wavelength between 300~500 and 550~800 nm. By fabricating the photovoltaic cells of ITO / PEDOT:PSS / CuPc:P3HT:PCBM / BCP / Al with small-molecular and polymer donating materials blended layer, we demonstrated a high PCE of 4.20% with high Jsc of $10.05mA/cm^2$. This performance of photovoltaic cell with the blended layer of small-molecular and polymer can be competitive with that of tandem cells.

Molecular Conformation and Application of Stereoregular PMMA Langmuir-Blodgett Films

  • Kim, Jang-Joo;Jung, Sang-Don;Hwang, Wol-Yon
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.195-206
    • /
    • 1996
  • Molecular conformations of stereoregular poly(methyl methacrylate) (PMMA) monolayers have been investigated by scanning probe microscopes. Isotactic and syndiotactic PMMAs were found to have right and left hand helical structures, respectively. On the contrary atactic PMMA showed rather random arrangement of the chains. It has been demonstrated that the PMMA Langmuir-Blodgett (LB) films can be utilized to form nanoscale patterns down to 50 nm and to forma geodesic lens. It has also been manifested that the quantum efficiency of a polymer electroluminescent device can be significantly enhanced by inserting the PMMA LB films between the emitting layer and the cathode. All the applications utilize the unique characteristics of the LB films to form thin and uniform films in the molecular level.

  • PDF