• Title/Summary/Keyword: molecular cluster model

Search Result 42, Processing Time 0.021 seconds

Bubble Nucleation in Polymer Solutions (고분자 용액에서의 기포 형성)

  • 강성린;김기영;곽호영
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2004
  • The molecular cluster model for the homogeneous bubble nucleation rather than the classical nucleation theory was extended to predict the bubble nucleation events in elastomers(cross-linked polymers), polymers and polymer which are dissolved in the organic solvent. The classical theory assumes the formation of the critical bubble while the molecular cluster model assumes the critical cluster as for the initiation of the bubble nucleation. For the bubble nucleation in elastomers and polymers, the strain energy overcome by a critical bubble was also considered. The calculation results for the number of bubbles nucleated in elastormers and polymer solutions, which are about 10$\^$8/∼10$\^$12/ bubbles/㎤ are in good agreement with observed ones.

A Lattice Model Based Molecular Clusters for Supercritical Fluids (초임계 유체를 위한 분자 클러스터 기반의 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.306-309
    • /
    • 2011
  • A lattice model based molecular clusters is presented to improve a classical equation of state(EOS) for volumetric properties in the critical region. The term is based on the two assumptions: (1) The Helmholtz energy is individually divided into classical and long-range density fluctuation contribution (2) All molecules form cluster near the critical region due to long-range density fluctuation. To formulate such molecular cluster, we extended the Veytsman statistics originally developed for the cluster due to hydrogen bonding. The probability function in the statistics is modified to represent the characteristics of long-range density fluctuation vanishing far from critical region. The proposed fluctuation contribution was incorporated into the Sanchez-Lacombe EOS and the combined model with 6 adjustable parameters has been tested against experimental VLE data for pure compounds. The combined model is found to well represent flatten critical isotherm for methane and top of the coexistence curve for the tested components.

  • PDF

Vapor Bubble Nucleation : A Microscopic Phenomenon

  • Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1271-1287
    • /
    • 2004
  • In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

Bubble Nucleation in Polymer Solutions (폴리머 용액에서의 기포 형성)

  • Kang, Sung-Lin;Kim, Ki-Young;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1228-1233
    • /
    • 2003
  • The molecular cluster model for the homogeneous bubble nucleation was extended to predict the bubble nucleation events in elastomers, polymers and polymer solutions. For the bubble nucleation in elastomers and polymers, the strain energy overcome by a critical bubble was also considered. The calculation results for the number of bubbles nucleated are in good agreement with observed ones.

  • PDF

Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate (나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구)

  • Ko, Sun-Mi;Jeong, Heung-Cheol;Shibahara, Masahiko;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF

A Lattice Model Based on Molecular Clusters for Supercritical Fluids (초임계 유체를 위한 분자 클러스터 기반의 격자모델)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.961-964
    • /
    • 2010
  • A semi-empirical fluctuation term is presented to improve a classical equation of state (EOS) for volumetric properties in the critical region. The term is based on the two assumptions: (1) The Helmholtz energy is individually divided into classical and long-range density fluctuation contribution (2) All molecules form cluster near the critical region due to long-range density fluctuation. To formulate such molecular cluster, we extended the Veytsman statistics originally developed for the cluster due to hydrogen bonding. The probability function in the statistics is modified to represent the characteristics of long-range density fluctuation vanishing far from critical region. The proposed fluctuation contribution was incorporated into the Sanchez-Lacombe EOS and the combined model with 6 adjustable parameters has been tested against experimental VLE data. The combined model is found to well represent flatten critical isotherm for methane and top of the coexistence curve for the tested components. The prediction results for caloric data are in good agreement with the experimental data.

  • PDF

Multiscale Modeling of Radiation Damage: Radiation Hardening of Pressure Vessel Steel

  • Kwon Junhyun;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.229-236
    • /
    • 2004
  • Radiation hardening is a multiscale phenomenon involving various processes over a wide range of time and length. We present a multiscale model for estimating the amount of radiation hardening in pressure vessel steel in the environment of a light water reactor. The model comprises two main parts: molecular dynamics (MD) simulation and a point defect cluster (PDC) model. The MD simulation was used to investigate the primary damage caused by displacement cascades. The PDC model mathematically formulates interactions between point defects and their clusters, which explains the evolution of microstructures. We then used a dislocation barrier model to calculate the hardening due to the PDCs. The key input for this multiscale model is a neutron spectrum at the inner surface of reactor pressure vessel steel of the Younggwang Nuclear Power Plant No.5. A combined calculation from the MD simulation and the PDC model provides a convenient tool for estimating the amount of radiation hardening.

Theoretical molecular aspects of colloidal calcium phosphate in bovine milk (우유 속에 존재하는 칼슘과 인의 복합체에 대한 이론적인 분자학적 특성)

  • Choi, Jong-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.459-464
    • /
    • 2011
  • A simplified model for the colloidal calcium phosphate (CCP) nanocluster was developed from an active role of phosphate in the precipitation of casein (CN)/Ca mixtures and the composition of casein micelles (CM). The possible shape of the CCP nanocluster was selected as a tetrahedron, and we estimated that 4 CN molecules were involved in crosslinking a single CCP nanocluster. Similar values were obtained for the number of CN molecules involved in stabilizing the nanocluster when the number of CNs attached onto each nanocluster surface was deduced from the composition of CM. If one phosphoserine cluster consisted of 3 phosphoserine residues, the theoretical molecular weight and volume for the nanocluster were estimated to be 4,898 g/mol and 2.88 $nm^3$, respectively. It was also shown that the position of Ca present in our model were reasonably located to accommodate the serine phosphate in CN molecule.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Review on Asphaltene Architecture (아스팔텐에 대한 연구동향)

  • Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.151-158
    • /
    • 2014
  • Asphaltenes are generally defined by their solubility when a light alkane, such as n-heptane or n-pentane, is mixed with crude oils or oil sand bitumen. However, this definition is nowadays not enough to understand their behaviors during oil recovery, transport, storage, and even refinery operation. Interestingly, the researches regarding asphaltenes have been vastly presented within last decade. This is because the production of heavy oils is becoming larger and asphaltenes are known to play an important role in the property changes of heavy oils. In this paper, the researches regarding molecular weight, aggregation behavior of asphaltenes are introduced and discussed. It is expected that analytical studies will be appeared continuously in the form of global collaboration in order to describe asphaltene molecules as close as possible based on their origin.