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Abstract
A semi-empirical fluctuation term is presented to improve a classical equation of state (EOS) for
volumetric properties in the critical region. The term is based on the two assumptions: (1) The
Helmholtz energy is individually divided into classical and long-range density fluctuation
contribution (2) All molecules form cluster near the critical region due to long-range density
fluctuation. To formulate such molecular cluster, we extended the Veytsman statistics originally
developed for the cluster due to hydrogen bonding. The probability function in the statistics is
modified to represent the characteristics of long-range density fluctuation vanishing far from
critical region. The proposed fluctuation contribution was incorporated into the Sanchez-Lacombe
EOS and the combined model with 6 adjustable parameters has been tested against experimental
VLE data. The combined model is found to well represent flatten critical isotherm for methane and
top of the coexistence curve for the tested components. The prediction results for caloric data are
in good agreement with the experimental data.

1. Introduction

The advance in chemical industrial process engineering

requires thermodynamic model to describe various

properties over a wide range of temperature and

pressure. When the point of interest is far from critical

point, classical equations of state[1-3] can be easily

applied to calculate and predict physical properties.

However, such equations of state often fail to

satisfactorily reproduce physical properties near the

critical region where a singular behavior in

thermodynamic properties is observed[4]. The reason

lies that classical equations of state are based on mean

field approximation which neglects long-range density

fluctuation near the critical point[5].

Several strategies[6-11] were proposed to overcome

the deficiency of classical equations of state in

describing physical properties near the critical point.

These strategies can be classified as empirical and

theoretical based. Renormalization group theory and

crossover theory are good examples of the theoretical

based approach[10-12]. The former is based on the

phase-space cell approximation[13-14] as well as the

Hamiltonian in White’s work[15-16] and the latter

founded on classical Landau expansion[170 around the

critical point. These approaches have been extended to

diverse frameworks such as cubic[10,18],

hard-sphere[19,20] and lattice[21] and showed a good

representation of the thermodynamic properties over a

wide range of temperature and pressure. However,

these approaches imply some disadvantages.

Renormalization group theory requires numerical

integration, indicating that EOS cannot be explicitly

expressed. Crossover theory requires several parameters

to fit experimental data due to its phenomenological and

the signification of long-range density fluctuation has

not been clarified[22].

The purpose of this study is to develop a different

approach, an explicit alternative formulation of long

range density fluctuation in terms of molecular cluster.

The molecular clusters are found between molecules

forming hydrogen bonding as well as polar fluids and

modeled by well-known thermodynamic models such as

chemical theory[23], Wertheim’s theory[24,25] and

Veytsman statistics[26]. However several researches

showed that even non-hydrogen bonding molecules can

form clusters (or aggregates) near the critical region.

Pfund and co-workers[27] showed by small angle x-ray

scattering (SAXS) that aggregates of xenon increases

near the critical density. Tucker and Maddox[28] could

show by molecular simulation that clustering between

particles occurs around a critical point. The concept of

molecular cluster near the critical region was first

introduced in property calculation by Heideman and

Prausnitz[23]. They modeled clustering of argon by
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chemical theory and showed an improved representation

of critical isotherm with their EOS. However no further

development was done for non-hydrogen bonding

molecules.

To develop this approach, the employed hydrogen

bonding theory is required to be flexible enough to

describe the clustering near the critical density since

such theories were originally developed to account for

the clustering at high density region. Hence, Veytsman

statistics is used and extended because this statistics

provides a probability function which determines the

region where clustering is dominant. Lee et al[29]

concluded in their work that Veytsman statistics is

enough flexible to account for other type of cluster

such as intra-molecular hydrogen bond. We propose a

modified probability function which becomes only

significant near the critical density and temperature.

2. Thermodynamic Model

It is assumed that both quantities, long-range density

fluctuation and molecular cluster, are exactly matched

to each other. Let us denote Ωcl as classical

configurational partition function. If we assign Ωmc as

partition function solely accounting for clustering effect,

the correct total configuration partition function, Ωtot,

can be factorized as

(1)

The Ωmc has two boundary conditions. As it is

associated with the number of ways to distribute

clustered molecules, it has a value of 1 at the region

far from critical point and reaches some maximum

value near the critical region.

(2)

where k is Boltzmann constant and ρm is molar density.

We denote Pcl and Pmc as pressures corresponding to Ω

cl and Ωmc and these pressures have following relation

by equation (2),

(3)

Equation 3 enables us to find the effect of clustering

on P-ρ isotherm. Suppose that the temperature of the

system is close to critical temperature and clustering

effect is most dominant at ρc, critical density. This

indicates that Ωmc has a maximum at ρc. The

logarithmic Ωmc, ln(Ωmc), has a similar behavior with Ω

mc, nearly constant far from critical point and convex at

ρc. Thus, its derivative with respect to density are

positive convex between 0 and ρc and negative concave

between ρc and ρhc , hard-core density . It means that

molecular cluster effect makes a negative pressure

correction at lower density than ρc and positive

pressure correction at higher density than ρc. Thus Ptot

becomes lower than Pcl between 0 and ρc and higher

between ρc and ρhc.

The proposed clustering effect is able to flatten the

classical pressure isotherm provided that Pcl satisfies

flowing constraints,

(4)

Veytsman statistics was proposed to account for n-mer

cluster due to association. Before extending Veytsman

statistics to molecular cluster due to long-range density

fluctuation, we briefly discuss the basic formalism of

the statistics. In the case of pure hydrogen bonding

components with single type of donor and acceptor, the

number of ways of distributing NHB, hydrogen bonding

pairs between donor and acceptor, among N1 molecules

is,

(5)

where a, d is the number of donor and acceptor per

molecule respectively. Equation 3 assumes that the

donors and acceptors of hydrogen bonding pairs are not

necessarily to be adjacent with each other. As

hydrogen bonding occurs between donors and acceptors

nearby, the exact number of ways of distributing NHB

pairs between donor and acceptor is defined as,

(6)

where pHB is the probability that donor and acceptor

are located in the vicinity with respect to each other

and thus hydrogen bonding occurs. Panayiotou and

Sanchez[31] proposed pHB as,

(7)

where Nr is total number of lattice sites composed of

N0 holes and N1 r-mers, r is segment length of pure

component, ρ is reduced density or volume fraction

defined as rN1/Nr and SHB is entropy loss resulting

from hydrogen bonding formation. Equation 7 indicates

that hydrogen bonding contribution is negligible at low

density and significant at high density region. The

canonical partition function of hydrogen bonding

contribution is,

(8)

where EHB is hydrogen bonding energy. The last

exponential term in the right affects the dependence of
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hydrogen bonding to the temperature.

As clustering due to long-range density fluctuation is

assumed to be negligible at the region far from critical

point, the probability for such clustering is proposed as,

(9)

where χ represents temperature dependence of pmc and

the exponent m and n represent the rate of rise and

fall of pmc in low and high density region respectively.

They all have positive values. The proposed probability

function satisfies following boundary condition: it

become negligible at low and high density region

because ρ and 1- ρ lead the eq 9 to zero as ρ → 0

and 1 respectively. Equation 7 has a maximum at the

density ρ*=m/(n+m).

For χ, a similar relation proposed by Krasak and

Deiters[7] was found to be appropriated

(10)

where Tr is reduced temperature defined as T/Tc, H1 is

a universal constant(H1=200) and C0 is

component-specific adjustable parameter. This Gaussian

function satisfies two boundary conditions with respect

to temperature: clustering effect is significant at

near-critical temperature and negligible at both low and

high temperature region.

To derive a partition function for molecular cluster near

the critical region, we made two assumptions. First, the

number of donor and acceptor per molecule, a and d,

were set to 1 to enable multiple cluster formation.

Second, we assumed no interaction energy upon

clustering formation between molecules. Thus the

partition function is given as

(11)

where Nmc is the number of clustered molecules due to

long-range fluctuation. Equation (11) is maximized with

respect to Nmc to give following constraint,

(12)

The Helmholtz energy of clustering effect is given as

(13)

where β is reciprocal temperature defined as 1/kT.

Contributions to pressure and configurational reduced

chemical potential due to molecular cluster are

(14)

(15)

where VH is specific cell volume of lattice. The Nmc/N1

is positive root of equation (12) given as

(16)

where .

The proposed contribution for molecular cluster is

derived in the framework of lattice fluid. In the present

study, we apply the proposed contribution to the

Sanchez-Lacombe EOS. The basic Sanchez-Lacombe

EOS has the form

(17)

(18)

where ε is molecular interaction energy and subscript

SL is abbreviation of Sanchez-Lacombe. The overall

equation of pressure and chemical contribution are

(19)

(20)

3. Results and Discussion

For pure fluids, the present model requires 3 classical

parameters for description: the cell volume (VH),

segment number (r), and pair interaction energy (ε).

Besides these parameters, 3 parameters, m, n and C0,

are also required to describe the clustering effect.

Although these parameters are empirically defined, we

will discuss the connection of their value to the true

physical behavior in later section. Thus the present

model has six adjustable parameters. To obtain these

model parameters, we adopted a specific regression

technique called global regression[8]. The parameters

are regressed at the same time by fitting the model to

critical points, supercritical PVT data, saturated vapor

pressure, and liquid density simultaneously over a wide

temperature range. Objective function for the regression

is defined as sum of average absolute relative deviation

(AARD) of experimental data as follows,

(21)

where NP1 and NP2 are the number of experimental

data of saturated properties and supercritical PVT data

respectively and superscript L, exp, and calc stand for
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liquid phase, experimental data and calculated data.

Table 1 presents the best fitted parameters for the

present models and AARD(%) of vapor pressure and

saturated liquid density for each component. Most of

components have AARD of less than 2% and 3% for

saturated vapor pressures and saturated liquid densities

respectively. The average AARD for all components are

1.3% for saturated vapor pressure and 2.2 % for

saturated liquid density. These large deviations can be

further reduced if temperature dependent classical

parameter is employed. But such strategy may yield the

effect of critical anomaly to be partially included in the

temperature dependence. These small deviations indicate

that the constraint of correlating critical point does not

impair the accuracy of VLE calculation.

[Table 1] Pure parameters for the present models and

AARD(%) of vapor pressure and saturated liquid

density

It is a fundamental attribute for an EOS to accurately

correlate volumetric properties such as saturated liquid

density and supercritical PVT data.

4. Conclusion

This paper proposes a new formulation of long-range

density fluctuation in terms of molecular cluster. The

proposed contribution is developed for the classical EOS

which overpredicts both critical temperature and critical

pressure. It was incorporated into the Sanchez-Lacombe

EOS and showed a good agreement with experimental

volumetric and caloric data. The flatness of the top of

coexistence curve and critical isotherm could be

reproduced. In obtaining fluctuation effect, our approach

is similar with the recent proposed version of crossover

theory in that fluctuation effect is obtained by solving

quadratic equation where the solution is analytically

expressed. These quadratic form for fluctuation effect is

more effective than other non-anlytic fluctuation term.
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