• Title/Summary/Keyword: molecular cloning

Search Result 1,139, Processing Time 0.039 seconds

Expression, Purification and NMR Studies on MC4R-TM2 Mutant

  • Oh, Dae-Seok;Yun, Ji-Hye;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • Melanocortin-4 receptor (MC4R) subtype is associated with obese humans. Especially, in a patient with severe early-onset obesity, novel heterozygous mutation in the MC4R gene was detected, resulting in an exchange of aspartic acid to asparagine in $90^{th}$ amino acid residue located in the predicted second trans-membrane domain (TM2). Mutations in the melanocortin-4 receptor (MC4R) gene are the most frequent monogenic causes of severe obesity which have been described as heterozygous with loss of function. In order to compare structure difference between MC4R wild type (MC4R-TM2-wt) and mutant (MC4R-TM2-D90N), we designed both MC4R-TM2-wt and MC4R-TM2-D90N construct in pET 21b vector. In this study, we optimized high-yield purification procedure for recombinant TM2-D90N. Eluted recombinant protein was resolubilized under urea condition for thrombin cleavage reaction and we conducted the high-performance liquid chromatography (HPLC) with reverse phase column under 1% acetonitrile, 0.01% TFA buffer solution. The molecular size of purified target peptide was confirmed by Tricine-SDS page analysis. To characterize MC4R-TM2-D90N, we have performed $^{15}N$-isotope labeling of peptide using M9 media and purified labeled target peptide for hetero-nuclear NMR spectroscopy.

Cloning and Molecular Characterization of ${\beta}$-1,3-Glucan Synthase from Sparassis crispa

  • Yang, Yun Hui;Kang, Hyeon-Woo;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • A ${\beta}$-glucan synthase gene was isolated from the genomic DNA of polypore mushroom Sparassis crispa, which reportedly produces unusually high amount of soluble ${\beta}$-1,3-glucan (${\beta}$-glucan). Sequencing and subsequent open reading frame analysis of the isolated gene revealed that the gene (5,502 bp) consisted of 10 exons separated by nine introns. The predicted mRNA encoded a ${\beta}$-glucan synthase protein, consisting of 1,576 amino acid residues. Comparison of the predicted protein sequence with multiple fungal ${\beta}$-glucan synthases estimated that the isolated gene contained a complete N-terminus but was lacking approximately 70 amino acid residues in the C-terminus. Fungal ${\beta}$-glucan synthases are integral membrane proteins, containing the two catalytic and two transmembrane domains. The lacking C-terminal part of S. crispa ${\beta}$-glucan synthase was estimated to include catalytically insignificant transmembrane ${\alpha}$-helices and loops. Sequence analysis of 101 fungal ${\beta}$-glucan synthases, obtained from public databases, revealed that the ${\beta}$-glucan synthases with various fungal origins were categorized into corresponding fungal groups in the classification system. Interestingly, mushrooms belonging to the class Agaricomycetes were found to contain two distinct types (Type I and II) of ${\beta}$-glucan synthases with the type-specific sequence signatures in the loop regions. S. crispa ${\beta}$-glucan synthase in this study belonged to Type II family, meaning Type I ${\beta}$-glucan synthase is expected to be discovered in S. crispa. The high productivity of soluble ${\beta}$-glucan was not explained but detailed biochemical studies on the catalytic loop domain in the S. crispa ${\beta}$-glucan synthase will provide better explanations.

Molecular Cloning of the Gene in Schizosaccharomyces pombe Related to the CDC3 Gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 CDC3 유전자와 유사한 Schizosaccharomyces pombe 유전자의 클로닝)

  • 김형배
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.197-202
    • /
    • 1993
  • The budding yeast S. cerevisiae contains 10-nm filament ring that lies just inside the plasma memhrane in the region of the mother-bud neck. It is possihle that CDC3. CDCIO, CDCII. CDCI2 genes encode the filaments. Recently it has been shown that the CDC3 and CDCI2 gene products arc localized to [he vicinity of the neck lilaments by immunolluorescence. However. the role of the lilament ring is not clear. In order to find out the role of filament ring. I have tried to clone the similar gene in S. pomhe to the CDC3 in S. cerevisiae. Genomic library was constructed by use of $\lambda$gtll expression vector and screened with CDC3 antibodies. From sequencing data, there were more than two introns in the newly cloned gene. There was 62% homology between the part of the predicted amino acid sequence of cloned gene and CDC3 amino acid sequence.

  • PDF

Cloning, Characterization and Expression Analysis of Interleukin-10 from the Zebrafish (Danio rerion)

  • Zhang, Dian-Chang;Shao, Yan-Qing;Huang, Yan-Qin;Jiang, Shi-Gui
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.571-576
    • /
    • 2005
  • Cytokines are proteins produced by many different cells of the immune system and play a significant role in initiating and regulating the inflammatory process. In this research, an important cytokine, interleukin-10 (IL-10) gene, has been identified and characterized from zebrafish (Danio rerio) genome database. Zebrafish IL-10 is located within a 2690 bp fragment and contains five exons and four introns, sharing the same organization with mammalian IL-10 genes. An open reading frame of 543 bp was found to encode a putative 180 amino acid protein with a signal peptide of 22 amino acids, which shares 29.7-80.9% homology with amino acid sequences of other known IL-10. The signature motif of IL-10 is also conserved in zebrafish IL-10. The predicted transcript was finally confirmed by sequencing of cDNA clones. Multi-tissue reverse transcriptase PCR (RT-PCR) was performed to examine the tissue distribution and expression regulation of this gene in seven organs of normal and lipopolysaccharide (LPS) stimulation zebrafish. The results demonstrated that this gene was expressed slightly in normal kidney, gill and gut, no expression was detected in other four tissues. The expression was clearly upregulated after LPS stimulation. Using the ideal zebrafish model, further study of IL-10 characterization and function may provide insight on the understanding of the innate immune system.

Cloning and Characterization of a Rice cDNA Encoding Glutamate Decarboxylase

  • Oh, Suk-Heung;Choi, Won-Gyu;Lee, In-Tae;Yun, Song-Joong
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.595-601
    • /
    • 2005
  • In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected to phosphorus deprivation. Nucleotide sequence analysis indicated that the RicGAD clone was 1,712 bp long, and harbors a complete open reading frame of 505 amino acids. The 505 amino acid sequence deduced from this RicGAD clone exhibited 67.7% and 61.9% identity with OsGAD1 (AB056060) and OsGAD2 (AB056061) in the database, respectively. The 505 amino acid sequence also exhibited 62.9, 64.1, and 64.2% identity to Arabidopsis GAD (U9937), Nicotiana tabacum GAD (AF020425), and Petunia hybrida GAD (L16797), respectively. The RicGAD was found to possess a highly conserved tryptophan residue, but lacks the lysine cluster at the C-proximal position, as well as other stretches of positively charged residues. The GAD sequence was expressed heterologously using the high copy number plasmid, pVUCH. Our activation analysis revealed that the maximal activation of the RicGAD occurred in the presence of both $Ca^{2+}$ and calmodulin. The GAD-encoded 56~58 kDa protein was identified via Western blot analysis, using an anti-GAD monoclonal antibody. The results of our RT-PCR analyses revealed that RicGAD is expressed predominantly in rice roots obtained from rice seedlings grown under phosphorus deprivation conditions, and in non-germinated brown rice, which is known to have a limited phosphorus bioavailability. These results indicate that RicGAD is a $Ca^{2+}$/calmodulin-dependent enzyme, and that RicGAD is expressed primarily under phosphate deprivation conditions.

Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid

  • Guo, Bin;Hexige, Saiyin;Zhang, Tian;Pittman, Jon K.;Chen, Donghong;Ming, Feng
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.845-852
    • /
    • 2007
  • The highly evolved flowers of orchids have colorful sepals and fused columns that offer an opportunity to discover new genes involved in floral development in monocotyledon species. In this investigation, we cloned and characterized the homologous PISTALLATA-like (PI-like) gene PhPI15 ($\underline{Ph}alaenopsis$ $\underline{PI}$ STILLATA # $\underline{15}$), from the Phalaenopsis hybrid cultivar. The protein sequence encoded by PhPI15 contains a typical PI-motif. Its sequence also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI15 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed in all the whorls of the Phalaenopsis flower, while no expression was detected in vegetative organs. The flowers of transgenic tobacco plants ectopically expressing PhPI15 showed male-sterile phenotypes. Thus, as a Class-B MADS-box gene, PhPI15 specifies floral organ identity in orchids.

Screening of melon genotypes identifies gummy stem blight resistance associated with Gsb1 resistant loci

  • Hassan, Md Zahid;Robin, Arif Hasan Khan;Rahim, Md Abdur;Natarajan, Sathishkumar;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.217-227
    • /
    • 2018
  • Gummy stem blight (GSB) is one of the most destructive and economically important, soil borne diseases of melon caused by the ascomycete fungus, Didymella bryoniae throughout the world. In Korea, however, no GSB resistant genotype has been reported yet. The study aimed to identify GSB resistant melon germplasm. We screened a total of 60 genotypes including 16 lines and 44 melon cultivars collected from USA and Korea. Among the 16 melon lines, four lines including 'PI482399', 'PI140471', 'PI136170' and 'PI420145', and two Korean cultivars viz. 'Asia Papaya' and 'Supra' showed complete resistance. We were aware that both genotypic and environmental variations could influence the phenotypic screening of resistance and susceptibility. We therefore, further assessed all genotypes using 20 SSR markers. The SSR marker 'CMCT505' linked to Gsb1 in chromosome 1 perfectly grouped resistant and susceptible lines indicating that resistance is probably due to the presence of Gsb1 gene. Cloning and sequencing of resistant and susceptible Gsb1 amplicons showed that there were 32-bp deletions in resistant line and 39-bp deletions in resistant cultivar compared to susceptible one. Thus, the resistant melon lines and cultivars identified in this study could be recommended for the melon breeding program. Furthermore, the SSR marker 'CMCT505' which is tightly linked with Gsb1 could be used for molecular screening of melon germplasm.

Cloning of the Adenosine Deaminase Gene from Pseudomonas iodinum IFO 3558

  • Jo, Young-Bae;Baik, Hyung-Suk;Bae, Kyung-Mi;Jun, Hong-Ki
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.9-14
    • /
    • 1999
  • Pseudomonas iodinum IFO 3558 adenosine deaminase(ADA) gene was cloned by the polymerase chain reaction and deduced the amino acid sequence of the enzyme. DNA sequence homology of Pseudomonas iodinum IFO 3558 ADA gene was compared to those of E. coli, human and mouse ADA genes. Unambiguous sequence from both strands of pM21 was obtained for the region believed to encode ADA. The sequence included a 804-nucleotide open reading frame, bounded on one end by sense primer and on the other end by two antisense primer. This open reading frame encodes a protein of 268 amino acids having a molecular weight of 29,448. The deduced amino acid sequence shows considerable similarity to those of E. coli, mouse and human ADA. Pseudomonas iodinum IFO 3558 nucleotide sequence shows 98.5% homology with that of the E. coli ADA sequence and 51.7% homology with that of the mouse ADA sequence and 52.5% homology with that of the human ADA sequence. The ADA protein sequence of Pseudomonas iodinum IFO 3558 shows 96.9% homology with that of the E. coli and 40.7% homology with that of the mouse and 41.8% homology with that of the human. The distance between two of the conserved elements, TVHAGE and SL(1)NTDDP has veen exactly conserved at 76 amino acids for all four ADAs. Two of the four conserved sequence elements shared among the four ADAs are also present in the yeast, rat, human (M), and Human(L) AMP deaminase. The SLSTDDP sequence differs only in the conservative substitution of a serine for an asparagine. A conserved cysteine with conserved spacing between these two regions is also found. Thus, sequence analysis of four ADAs and four AMP deaminases revealed the presence of a highly conserved sequence motif, SLN(S)TDDP, a conserved dipeptide, HA, and a conserved cysteine residue.

Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

  • Jiang, Ming Feng;Hu, Ming Jun;Ren, Hong Hui;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1774-1783
    • /
    • 2015
  • Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector $pPICZ{\alpha}A$ and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

Molecular Cloning of a cDNA Encoding Ribulose-1,5-bisphosphate Carboxylase Small Subunit (rbcS) from Panax ginseng C. A. Meyer (고려인삼의 Ribulose-1,5-Bisphosphate Carboxylase Small Subunit(rbcS) 유전자의 분리 및 특성분석)

  • In Jun Gyo;Lee Bum Soo;Youn Jae-Ho;Son Hwa;Yi Tae Hoo;Yang Deok Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.374-381
    • /
    • 2005
  • A full-length cDNA encoding ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) has been isolated and its nucleotide sequence determined from root in ginseng plant (Panax ginseng). The rbcS cDNA of ginseng is 790 nucleotides long and has an open reading frame of 549 bp with deduced amino acid of 183 residues (pI 8.37), 20.5 kDa. The deduced amino acid sequence of rbcS matched to the previously reported rbcS protein genes and showed a high similarity with the $78\%$ identity with rbcS of Helianthus annuus (CAA68490). In the phylogenetic analysis based on the amino acid residues, the ginseng rbcS was clustered with H. annuus (CAA68490), C. morifolium (AA025119) and L. sativa (Q40250).