• Title/Summary/Keyword: molecular cloning

Search Result 1,136, Processing Time 0.03 seconds

Molecular Cloning of ${\alpha}$-Amylase Gene from Schwanniomyces CBS 2863 (Schwanniomyces castellii CBS 2863으로부터 ${\alpha}$-Amylase 유전자 Cloning)

  • Park, Jong-Chun;Bai, Suk;Chun, Bai-CHun
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 1994
  • The gene encoding ${\alpha}$-amylase of Schwanniomyces castellii was cloned in Saccharomyces cerevisiae. The 5.0-kilobase insert was shown to direct the synthesis of ${\alpha}$-amylase. Southern blot analysis confirmed that this ${\alpha}$-amylase gene was derived from the genomic DNA of Sch. castellii. Immunoblot analysis showed that ${\alpha}$-amylase production from S. cerevisiae transformant was less than that of donor strain. The ${\alpha}$-amylase secreted from S. cerevisiae transformant was shown to be indistinguishable from that of Sch. castellii on the basis of molecular weight and enzyme properties.

  • PDF

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

Molecular Cloning and Expression of Bacillus pasteurii Urease Gene in Escherichia coli (B. pasteurii Urease 유전인자의 E. coli의 복제와 발현)

  • Kim, Sang-Dal;John Spizizen
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.297-302
    • /
    • 1985
  • The 7.1 Mdal Xbaf fragment of Bacillus pasteurii ATCC 11859 containing gene for urease was inserted into the Xbal site of bifunctional plasmid pGR71, and its urease gene was cloned and expressed in E. coil RRI. But the cloned gene was not expressed in Bacillus subtilis BR151 in consequence of deletion of inserted DNA fragment. The recombinant plasmid thus formed was named pGU66. The restriction map of the plasmid pGU66 was determined, and the size of the plasmid was estimated to be 12.6 Mdal by double digestion of restriction enzymes of the plasmid. The urease of the cloned strain was accumulated in periplasmic space and very similiar to that of donor strains in their enzymatic properties.

  • PDF

'Restriction-PCR' - a Superior Replacement for Restriction Endonucleases in DNA Cloning Applications

  • Klimkait, Thomas
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.162-165
    • /
    • 2000
  • Polymerase chain reaction (PCR) is well established as an indispensable tool of molecular biology; and yet a limitation for cloning applications continues to be that products often require subsequent restriction to be that products often require subsequent restriction digests, blunt-end ligation, or the use of special linear vectors. Here a rapid, PCR-based system is described for the simple, restriction enzyme-free generation of synthetic, 'restriction-like' DNA fragments with staggered ends. Any 3'- or 5'-protruding terminus, but also non-palindromic overhangs with an unrestricted single strand length are specifically created. With longer overhangs, "Restriction-PCR" does not even require a ligation step prior to transformation. Thereby the technique presents a powerful tool e.g. for a successive, authentic reconstitution of sub-fragments of long genes with no need to manipulate the sequence or to introduce restriction sites. Since restriction enzyme-free and thereby devoid the limitations of partial DNA digests, "Restriction-PCR" allows a straight one-step generation and cloning of difficult DNA fragments that internally carry additional sites for specific sequence insertions or deletions can be precisely engineered into genes of interest. With these properties "Restriction-PCR" has the potential to add significant speed and versatility to a wide variety of DNA cloning applications.

  • PDF

Cloning, Sequencing and Expression of an Extracellular Protease Gene from Serratia marcescens RH1 in Escherichia coli

  • Lee, Seung-Hwan;Kim, Jeong-Min;Kwon, Young-Tae;Kho, Young-Hee;Rho, Hyune-Mo
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.507-513
    • /
    • 1992
  • Serratia marecescens RH1 isolated from soil samples produced large amount of extracellular proteases. One of the genes encoding an extracellular protease form S. marcescens RH1 was cloned in Escherichia coli by shot gun cloning method. The cloned protease, SSP, was stably expressed by its own promoter and excreted into the extracellular medium from E. coli host (ORF) of 3.135 nucleotides corresponding to 1.045 amino acids (112 kDa). The nucleotide and deduced amino acid sequence of SSP showed high overall homology (88%) to one of the S. marcescens protease (27), but low homology to other serine protease families. The optimal pH and temperature of the enzyme were pH 9.0 and 45.deg.C respectively. The activity of protease was inhibited by phenylmethylsulfonyl fluoride (PMSF), which suggests that the enzyme is a serine protease.

  • PDF