• 제목/요약/키워드: molecular charge

검색결과 445건 처리시간 0.034초

ITO/PEDOT/PSS/TPD/Alq$_3$/LiAl 구조의 유기 발광 소자에서 전도 메카니즘 (Conduction mechanism in organic light-emitting diode in ITO/PEDOT/PSS/TPD/Alq$_3$/LiAl structure)

  • 정동회;김상걸;정택균;오현석;이원재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.198-201
    • /
    • 2002
  • We have studied the temperature dependence of current-voltage and luminance-voltage characteristics of Organic Light Emitting Diodes(OLEDs). The OLEDS are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinoline) aluminum(III) (Alq$_3$) as an electron transport, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a buffer layer. The current-voltage and luminance-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs has been interpreted in terms of space-charge-limited current(SCLC) and tunneling mechanism.

  • PDF

분자 간 거리 감소에 의한 펜타센 박막트랜지스터의 전하 이동도 향상 (Mobility Enhancement in a Pentacene Thin-film Transistor by Shortening the Intermolecular Distance)

  • 정태호
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.500-505
    • /
    • 2012
  • In this study, the influence of the intermolecular distance on the charge mobility in a pentacene thin-film was investigated. In order to increase the mobility which depends on the ${\pi}$-overlap between molecules, the intermolecular distance was shortened by compressive force along the conduction channel. Pentacene thin-film was fabricated on flexible substrates bent outward at different radii to stretch the gate dielectric surface and then the substrates were unbent, producing the compressive force to the film. The result showed that the mobility increased proportionally to the strain applied during the pentacene deposition and the molecular packing inside a grain was not optimal for the charge transport.

Charge Transfer between Graphene and a Strong Electron Acceptor, Tetrafluorotetracyanoquinodimethane (F4-TCNQ)

  • 이지은;김선호;강성규;양성익;류순민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.458-458
    • /
    • 2011
  • Graphene, a single atomic layer of sp2-bonded carbon, shows substantial potential for various applications. Chemical manipulation of its electronic properties will be of great importance. In this study, we have investigated interaction between graphene and organic molecular layer of tetrafluorotetracyanoquinodimethane (F4-TCNQ), a strong electron acceptor. F4-TCNQ films of varying thickness were evaporated onto graphene mechanically exfoliated on SiO2/Si substrates. F4-TCNQ molecules increase the frequencies of Raman G and 2D bands of graphene while decreasing the linewidth of G band and 2D/G intensity ratio, which is consistent with increase of hole density in graphene. These results exemplify the possibility of chemical tuning of electronic properties of graphene.

  • PDF

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

1-알콕시-4-니트로아닐린들의 糖度에 關한 硏究 (Sweet Taste Mechanism of 1-Alkoxy-4-nitroaniline)

  • 김의락;전무식;채영복
    • 대한화학회지
    • /
    • 제17권6호
    • /
    • pp.391-394
    • /
    • 1973
  • 반실험적인 양자역학 이론인 extended Huckel theory를 nitroaniline, 1-methoxy-4-nitroaniline과 1-ethoxy-4-nitroaniline에 적용하여 정량적으로 변화하는 sweetness기구를 구명코져 nitroaniline을 coplanar로 두고 ortho치환체의 geometrical rotation을 시켰을 때 charge density와 sweetness와의 상관관계를 설명하였다.

  • PDF

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.

새로운 광굴절재료의 제작 및 특성 (Synthesis and Properties of the New Photorefractive Material)

  • 민완기;김남오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.120-124
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials. have been developed based on polymeric composites, fully functional polymers and the multifunctional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting functionality or multifunctions play a very important role in photorefraction and have been widely used in the molecular design approach to new organic photo- refractive materials.

  • PDF

TPD/$Alq_3$를 이용한 유기 발광 소자의 온도에 따른 전압-전류 특성 (Temperature Dependent Current-Voltage Characteristics of Organic Light-Emitting Diodes using TPD/$Alq_3$)

  • 한원근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.533-534
    • /
    • 2005
  • Temperature-dependent current-voltage characteristics of organic light-emitting diodes(OLEDs) were studied in a device structure of ITO/TPD/$Alq_3$/Al. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-l,1'-diphenyl-4,4'-diamine(TPD) as a hole transport and tris(8-hydroxyquinoline) aluminum($Alq_3$) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10K and 300K. We analyzed an electrical conduction mechanism of the OLEDs using space-charge-limited current(SCLC) and Fowler-Nordheim tunneling.

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Theoretical Study of the Cobalt Substituting Site in the Framework of $AlPO_{4}-5$ Molecular Sieves

  • Sang Joon Choe;Dong Ho Park;Do Sung Huh
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권1호
    • /
    • pp.55-58
    • /
    • 1993
  • In order to determine the cobalt substituting site in $AlPO_4-5$ framework, ASED-MO theory has been used. The substitution of cobalt for aluminum is energetically more favorable than that for phasphorous. The stabilized energy of the former is 51 eV lower than that of the latter. The calculated net charge was +1.27 for Al, +0.85 for P, and +1.56 for Co, respectively. The valence electron population (VEP), reduced overlap population (ROP) and net charge for the charged cluster models were compared for $AlPO_4-5$ and $CoAlPO_4-5$ systems. Then, twe find that the covalency of P-O bond was greater than that of Al-O bond.