• 제목/요약/키워드: molecular bonding

검색결과 289건 처리시간 0.03초

새로운 3-Benzylidenemyosmine 유도체와 Nicotin Acetylcholine 수용체 사이의 결합 친화력 상수에 관한 HQSAR 분석과 분자설계 (Molecular Holographic QSAR Analysis on the Bonding Affinity Constants between Nicotin Acetylcholine Receptors and New 3-Benzylidenemyosmine Analogues and Molecular Design)

  • 장석찬;성낙도
    • Applied Biological Chemistry
    • /
    • 제50권2호
    • /
    • pp.127-131
    • /
    • 2007
  • 일련의 새로운 3-benzylidenemyosmine 유도체들의 구조 변화와 미국 바퀴벌래(Periplaneta. americana L.)의 nicotin acetylcholine 수용체 (nAChRs) 사이의 결합 친화력 상수에 관한 정량적인 구조와 활성과의 관계를 분자 홀로그램(H) QSAR 방법으로 검토하였다. 친화력 상수에 관하여 가장 양호한 HQSAR 모델은 분자조각 크기 5${\sim}$8 bin 조건에서 유도된 모델(IV-2)이었다. HQSAR 모델(VI-2)은 높은 예측성(q$^2$=0.507)과 상관성(r$^2_{nev.}$=0.944)에 근거하여 양호한 통계값들을 나타내었다. 그리고 HQSAR 기여도로부터 결합 친화력 상수는 분자내 anabaseine 고리에 의존적이었으며 결합 친화력성이 높은 화합물들이 최적화된 모델(VI-2)에 의하여 설계되었다.

기능성 용매에 대한 영양성분들의 평형분배 특성 (Equilibrium Partitioning of Nutrient Components in Functional Solvents)

  • 이형진;홍인권
    • 공업화학
    • /
    • 제20권3호
    • /
    • pp.346-350
    • /
    • 2009
  • 자연상태의 물질들은 많은 유용한 성분들을 포함하고 있다. 이 성분들 중에서, 천연 영양 성분들은 기능성 식품 또는 화장품, 의약품의 첨가제로써 활용 되고 있다. 이러한 영양성분들을 유용하게 활용하기 위해 각 성분들에 대한 최적의 용매 선택방법을 제시하였다. 각 성분에 대한 용해도 파라미터를 계산하였으며 총 용해도 파라미터는 분산성, 극성, 수소결합 효과로 구성되고 이들 기여도가 각각 계산되었다. 용질과 용매의 용해도 파라미터에 의해 chi(${\chi}_{12}$)파라미터가 결정되었으며 chi파라미터에 의해 아미노산 성분들에 대한 최적의 용매-용질쌍이 선정되었다.

염소 처리된 저밀도 폴리에틸렌 필름의 산화 및 기계적 완화 특성 (Oxidation and mechanical relaxation properties of chlorinated LDPE film)

  • 황명환;박동화;박구범
    • 한국안전학회지
    • /
    • 제6권3호
    • /
    • pp.27-34
    • /
    • 1991
  • 이 논문은 폴리에틸렌 필름을 염소처리해서 부분방전에 대한 내산화폭성 및 염소처리필름과 ${\gamma}$선조사 필름의 분자운동에 대해 조사한 것이다. 1. 열소처리한 PE 필름의 표면을 연마해서 C-Cl 이 10 $\mu$m깊이까지 분포하고 있음을 알았다. 2. 염소화가 진전하면 결정화도가 감소하며 가교가 발생한다. 3. 염소화 PE는 부분 방전에 의해 생기는 오존의 산화를 억제하고, 자신은 결합했던 염소를 잃는다. 4. 염소처리를 행하며 PE 의 CH2 주쇄의 운동인 ${\gamma}$ 흡수가 염소치환에 의해 감소한다.

  • PDF

Oligothiophene-based Semi-Conducting Nanostructures: from Solution to Solid-State Aggregates

  • Leclere, Ph.;Surin, M.;Lazzaroni, R.;Feast, W.J.;Schenning, A.P.H.J.;Meijer, E.W.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.304-304
    • /
    • 2006
  • The possibility to develop optoelectronic devices with improved properties by controlling the degree of organization at the molecular level of organic materials has been driving the design of new ${\pi}-conjugated$ systems. In particular, the organization by self-assembling processes (${\tilde{\Box}}{\d{\Box}}}$ interactions, hydrogen bonding) of well-defined oligomeric systems such as disubstituted oligothiophene derivatives has been demonstrated as a promising approach to conjugated materials with a high degree of structural order of the constituent building blocks. The self-organization of conjugated building blocks in solution or on surfaces, leading to the construction of nanoscopic and mesoscopic architectures, represents a starting point for the construction of molecular electronics or even circuits, through surface patterning with nanometer-sized objects.

  • PDF

Benzidine 鹽酸鹽의 結晶構造 (The Crystal Structure of Benzidine Dihydrochloride)

  • 구정회;김훈섭;신현소
    • 대한화학회지
    • /
    • 제16권1호
    • /
    • pp.18-24
    • /
    • 1972
  • Benzidine dihydrochloride crystallizes in the triclinic system. The space group is $P_1$. The unit cell dimensions are; a = 4.38${\pm}$0.01, b = 5.76${\pm}$0.01, c = 12.82${\pm}$0.02${\AA}$, $\alpha$ = 101.5${\pm}$0.2, $\beta$ = 99.5${\pm}$0.2, $\gamma$ = 99.5${\pm}$0.2$^{\circ}$; with one molecule per unit cell. The crystal structure has been solved by two dimensional Patterson and by trial and error methods, and refined by means of two dimensional differential synthesis. The bond distances are C-C(*) = 1.40${\pm}$0.02, C-C = 1.52${\pm}$0.02, C-N = 1.51${\pm}$0.03 and N-H${\cdot}{\cdot}{\cdot}$Cl = 3.21${\pm}$0.03${\AA}$. The structure consists of hydrogen bonded molecular layers, extending to the (100) plane, and the hydrogen bonding scheme is similar to that of p-phenylenediamine dihydrochloride. The adhesion between hydrogen bonded molecular layers is due to van der Waals forces.

  • PDF

Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

  • Khaw, Kooi-Yeong;Murugaiyah, Vikneswaran;Khairuddean, Melati;Tan, Wen-Nee
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.88-92
    • /
    • 2018
  • The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor ($12.65{\pm}1.57{\mu}g/ml$) while garcinexanthone G (6) was the most active BChE inhibitor ($18.86{\pm}2.41{\mu}g/ml$). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

Characterization of Heat Reformed Naphtha Cracking Bottom Oil Extracts

  • Oh, Jong-Hyun;Lee, Jae-Young;Kang, Seok-Hwan;Rhee, Tai-Hyung;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.289-293
    • /
    • 2008
  • Naphtha Cracking Bottom (NCB) oil was heat reformed at various reforming temperature and time, and the volatile extracts were characterized including yields, molecular weight distributions, and representative compounds. The yield of extract increased as the increase of reforming temperature ($360{\sim}420^{\circ}C)$ and time (1~4 hr). Molecular weight of the as-received NCB oil was under 200, and those of extracts were distributed in the range of 100-250, and far smaller than those of precursor pitches of 380-550. Naphtalene-based compounds were more than 70% in the as-received NCB oil, and most of them were isomers of compounds bonding functional groups, such as methyl ($CH_{3^-}$) and ethyl ($C_2H_{5^-}$). When the as-received NCB oil was reformed at $360^{\circ}C$ for 1 hr, the most prominent compound was 1,2-Butadien, 3-phenyl- (24.57%), while naphthalene became main component again as increasing the reforming temperature.

Determination of Substrate Specificities Against β-Glucosidase A (BglA) from Thermotoga maritime: A Molecular Docking Approach

  • Rajoka, Muhammad Ibrahim;Idrees, Sobia;Ashfaq, Usman Ali;Ehsan, Beenish;Haq, Asma
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.44-49
    • /
    • 2015
  • Thermostable enzymes derived from Thermotoga maritima have attracted worldwide interest for their potential industrial applications. Structural analysis and docking studies were preformed on T. maritima β-glucosidase enzyme with cellobiose and pNP-linked substrates. The 3D structure of the thermostable β-glucosidase was downloaded from the Protein Data Bank database. Substrates were downloaded from the PubCehm database and were minimized using MOE software. Docking of BglA and substrates was carried out using MOE software. After analyzing docked enzyme/substrate complexes, it was found that Glu residues were mainly involved in the reaction, and other important residues such as Asn, Ser, Tyr, Trp, and His were involved in hydrogen bonding with pNP-linked substrates. By determining the substrate recognition pattern, a more suitable β-glucosidase enzyme could be developed, enhancing its industrial potential.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Mn-dimer 분자자성체의 전자구조 및 자기구조 계산 (Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet)

  • 박기택
    • 한국자기학회지
    • /
    • 제24권4호
    • /
    • pp.97-100
    • /
    • 2014
  • 분자자성체 Mn-dimer의 전기구조 및 자기적 성질을 제1원리의 범밀도함수법을 이용하여 계산하였다. 계산 된 결과, 전자구조는 벌크 MnO와 비슷한 Mn 주위의 4개의 산소 원자에 의해 $t_{2g}$, $e_g$ 에너지 준위로 분리되어 있었다. 적은 수의 배위원자로 이 결정장 분리는 작았디. 총에너지 계산에서는 반강자성적 상호작용이 낮은 에너지를 가지고 있었다. 계산 된 $Mn^{+2}$ 원자 사이의 교환상호작용 크기는 다른 Mn-O 분자자성체보다 한 단위 큰 값을 얻었다. 이 원인은 Mn 3d 사이의 직접 상호작용과 Mn-O의 강한 결합으로 인한 초교환상호작용의 결과이다.