• Title/Summary/Keyword: molecular bonding

Search Result 289, Processing Time 0.026 seconds

Anion Receptors with 2-Imidazolidone Molecular Scaffold

  • Kim, Hyung-Il;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1531-1534
    • /
    • 2007
  • Anion receptor based on 2-imidazolidone molecular scaffold has been synthesized. Anion binding studies carried out using 1H NMR and UV?vis spectroscopy revealed that this receptor 6 displays selectivity for the for the oxyanions such as acetate and dihydrogenphosphate ions and the affinity for the anions simply reflects the basicity of anions.

About naked fluoride

  • Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.121-123
    • /
    • 2018
  • Fluoride is one of most important atoms for both clinical and pharmaceutical usage. Associated with such a strong need, $^{18}F$-fluoride has been widely used as an essential radioisotope. The fluoride always suffers from strong solvation effects through strong hydrogen bonding, which reduce the reactivity of fluoride anion. To enhance the reactivity, the concept of naked fluoride was introduced in the fluorination field. In this essay, I will briefly describe the history of naked fluoride concept and development of naked fluoride sources.

Computer Graphics / Molecular Mechanics Studies of Quinolones Geometry Comparison with X-ray Crystal Structures

  • Chung, Sung-Kee;Daniel, F. chodosh
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-317
    • /
    • 1990
  • Geometries for several representative quinolone carboxylate type antibacterials have been calculated by computer graphics/molecular mechanics energy minimization procedures using both MM2 and AMBER force fields. The calculated geometries were found to be in reasonable agreements with the corresponding X-ray crystal structures. It has been pointed out that notwithstanding the weaknesses associated with calculating the resonance and hydrogen bonding contributions, the employed methods are capable of generating credible ring geometries and torsional angle dispositions of N(1)-ethyl and 3-carboxylate substituents of the quinolones.

Effects of Catalysts on the Adhesive Properties for Flip Chip Bonding (플립칩 본딩용 접착제 특성에 미치는 촉매제의 영향)

  • Min, Kyung-Eun;Lee, Jun-Sik;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.681-685
    • /
    • 2010
  • The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.

A Study on the Electronic Structures of Li Intercalated Vanadium Sulfide and Oxide (Li의 첨가에 따른 Vanadium의 유화물과 산화물의 전자상태계산에 관한 연구)

  • Jung, Hyun-Chul;Kim, Hui-Jin;Won, Dae-Hee;Yoon, Dong-Joo;Kim, Yang-Soo;Kim, Byung-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.604-608
    • /
    • 2008
  • The layered compounds vanadium disulfide($VS_2$) and vanadium dioxide($VO_2$) intercalated with Li are investigated for using the Discrete Variational $(DV)-X{\alpha}$ molecular orbital method. The chemical bonding properties of the atoms were examined by bond overlap population of electronic states. The plot of density of states supports the covalent bonding properties by showing the overlap between the atoms. There is a strong tendency of covalent bonding between V-S and V-O. The intensity of covalent bonding of $VS_2$ is stronger than $VO_2$. The net charge of $LiVO_2$ is higher than that of $LiVS_2$. This results of the calculation of $VO_2$ and $VS_2$ indicate that $(DV)-X{\alpha}$ method can be widely applied in the new practical materials.

Binding Models of Flavonols to Human Vascular Endothelial Growth Factor Receptor 2

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Woong-Hee;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2083-2086
    • /
    • 2009
  • Human vascular endothelial growth factor receptor 2 (hVEGFR2) is an important signaling protein involved in angiogenesis and attractive drug target in cancer therapy. It has been reported that flavonols, a class of flavonoids, have anti-angiogenic activity in various cancer cell lines. We performed receptor-oriented pharmacophore based in silico screening for identification of hVEGFR2 inhibitors from flavonol database. By comparing with three X-ray complex structures of hVEGFR2 and its inhibitors, we evaluated the specific interactions between inhibitors and receptors and determined a single pharmacophore map. This map consisted of four features, a hydrogen bonding acceptor (HBA) on Cys917, two hydrogen bonding donors on Glu917 (HBD1) and Glu883 (HBD2), and one hydrophobic interaction (Lipo) with Val846, Ala864, Val897, Val914 and Phe1045 of hVEGFR2. Using this map, we searched a flavonol database including 9 typical flavonols and proposed that five flavonols, kaempferol, quercetin, fisetin, morin, and rhamnetin can be potent inhibitors of hVEGFR2. 3-OH of C-ring and 4’-OH of B-ring of flavonols are the essential features for hVEGFR2 inhibition. This study will be helpful for understanding the mechanism of inhibition of hVEGFR2 by natural products.

Molecularly Imprinted Monolithic Stationary Phases for Liquid Chromatographic Separation of Tryptophan and N-CBZ-Phenylalanine Enantiomers

  • Yan, Hong-Yuan;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2006
  • Monolithic molecularly imprinted columns were designed and prepared by an in-situ thermal-initiated copolymerization technique for rapid separation of tryptophan and N- CBZ-phenylalanine enantiomers. The influence of polymerization conditions and separation conditions on the specific molecular recognition ability for enantiomers and diastereomers was investigated. The specious molecular recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities in the molecularly imprinted polymer (MIP). Moreover, hydrogen bonding interactions and hydrophobic interactions played an important role in the retention and separation. Compared to conventional MIP preparation procedures, the present method is very simple, and its macroporous structure has excellent separation properties.

Molecular Docking Studies of p21-Activated Kinase-1 (PAK1) Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2016
  • The p21-activated kinase-1 (PAK1) has emerged as a potential target for anticancer therapy. It is overexpressed in ovarian, breast and bladder cancers. This suggests that PAK1 may contribute to tumorigenesis. 4-azaindole derivatives are reported as potent PAK1 inhibitors. The present work deals with the molecular docking studies of 4-azaindoles with PAK1. Probable binding mode of these inhibitors has been identified by molecular modeling. Docking results indicated that hydrogen bonding interactions with Glu345 and Leu347 are responsible for governing inhibitor potency of the compounds. Additionally, Val284, Val328, Met344 and Leu396 were found to be accountable for hydrophobic interactions inside the active site of PAK1.

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • Choe, Seong-Eun;Gang, Eun-Ji;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

The Effect of Ice Adhesion according to Functional Group and Chemical Structure of Additive (화합물 작용기와 화학구조에 따른 수용액의 빙부착 억제 효과)

  • Chung, Dong-Yeol;Peck, Jong-Hyeon;Kang, Chae-Dong;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.607-614
    • /
    • 2007
  • This paper investigated that the functional group and chemical structure of additives affect ice adhesion in aqueous solutions cooling with stirring. In order to compare the effect on the ice adhesion in aqueous solutions, the functional group like carboxyl (-COOH), hydroxyl(-OH) or amine($-NH_{2}$) one were compared each other. Among the functional group, the strength of the hydrogen bonding force order is amine, hydroxyl and carboxyl one. It supports that ethylene diamine 7 mass% solution including amine group was effective to suppress the ice adhesion, though it is corrosive. Also, the ice adhesion were effectively resisted and formed lots of ice slurries in cooling experiment of 7 mass% solution of 1, 2-and 1, 3-propanediol which is different molecular structure but equal molecular weight each other.