• Title/Summary/Keyword: molecular bonding

Search Result 289, Processing Time 0.031 seconds

Conformation of Antiimflammatory Fenamates (소염진통성 페나메이트 유도체들의 형태분석)

  • Chung, Uoo-Tae;Kang, Kee-Long;Lee, Sung-Hee
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.632-639
    • /
    • 1996
  • Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

  • PDF

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

Ultrafiltration and Adhesive Characteristics of Alkali-soluble Extracts from Radiata Pine Barks (소나무수피 알칼리추출물의 한외여과 및 접착제 제조특성)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 1998
  • Alkali-soluble extracts were prepared from medium-sized barks of Radiata pine(Pinus radiata). There are difficulties in the production of extracts with uniform quality and in the preparation of adhesives with suitable viscosity. Ultrafiltration using an Amicon cell was subjected to fractionate extracts according to molecular sizes in order to overcome the above problem. The filtration efficiency was studied by using thin channel filtration systems. Adhesive manufacturing was also examined. Removal of particles greater than 0.45m from the extracts increased both filtration speed (flux) and yields of solids in the filtrates. Ultrafiltration with PM 10 membrane was very effective to fractionate and concentrate the extracts. Stiasny precipitates from the filtrates obtained by PM 10 membrane were very lower than that(83%) of the retentates. This ultrafiltration method was efficient for obtaining high yield purified phenolic compounds(mainly polyflavanoids) and thus important for preparing wood adhesives from barks. The extracts were shown excessive high viscosities at the concentrations required for adhesive formulation, but this high viscosity and short gelation time was reduced by lowering pH of the extracts and addition of urea. The highest bonding strength of plywoods(340g/$m^2$ of adhesive spreads) was achieved with adhesive formulated by 100parts of mixed alkali extracts and urea(70/30,w/w), 10parts of p-formaldehyde and 3.5parts of wheat flour at pH 6, and by hot pressing at the conditions of 12kg/$cm^2$ at $120^{\circ}C$ for 10 minutes.

  • PDF

Effect of Dissolved and Colloidal Contaminants of Newsprint Machine White Water on Water Surface Tension and Paper Physical Properties

  • Consultant, Seika-Tay
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.61-69
    • /
    • 1999
  • Contaminants such as fatty acids, triglycerides, resin acids and foam collected from a high yield sulfite weak liquor storage tank lowered the water surface tension and reduced inter-fibre bonding but also tended to benefit sheet opacity. Some common wet end additives such as defoamers and dispersants gave similar results. Lignosulfonate and naphthalene sulfonate showed little if any negative effect on both surface tension and sheet strength properties. Among the natural wood extractives. fatty acids were identified to be most detrimental followed by triglycerides and then resin acids. In order to alleviate the detrimental impact of these contaminants, membrane separation, air floatation and ozone treatment were carried out on paper machine white water samples. The effect of these treatments on removal of fatty and resin acids was quantified by a GC-Mass analysis. Reverse osmosis with a 1000 molecular weight cut off membrane failed to totally reject fatty and resin acids, but markedly reduced losses of sheet properties due to contaminants. Ozone treatment resulted in a significant increase of the surface tension and air floatation was considered to be a practical and useful method for removing fatty and resin acids from the machine white water.

The Interaction of Hydrogen Atom with ZnO: A Comparative Study of Two Polar Surfaces

  • Doh, Won-Hui;Roy, Probir Chandra;Kim, Chang-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.249-249
    • /
    • 2012
  • The interaction of hydrogen with ZnO single crystal surfaces, ZnO(0001) and ZnO(000-1), has been investigated using a temperature programmed desorption (TPD) technique. Both surfaces do not interact with molecular hydrogen. When the ZnO(0001) is exposed to atomic hydrogen at 370 K, hydrogen is adsorbed in the surface and desorption takes place at around 460 K and 700 K. In ZnO(000-1), the desorption peaks are observed at around 440 K and 540 K. In both surfaces, as the atomic hydrogen exposure is further increased, the intensity of the low-temperature peak reaches maximum but the intensity of the high-temperature peak keeps increasing. In ZnO(000-1), the existence of hydrogen bonding to the surface O atoms and the bulk hydrogen has been confirmed by using X-ray photoelectron spectroscopy (XPS). When the Zn(0001) surface is exposed to atomic hydrogen at around 200 K, a new $H_2$ desorption peak has been observed at around 250 K. The intensity of the desorption feature at 250 K is much greater than that of the desorption feature at 460 K. This low-temperature desorption feature indicates hydrogen is bonded to surface Zn atoms. We will report the effect of the ZnO structure on the adsorption and bulk diffusion of hydrogen.

  • PDF

Adsorptions and Dissociations of Nitric Oxides at Metalloporphyrin Molecules on Metal Surfaces: Scanning Tunneling Microscopy and Spectroscopy Study

  • Kim, Ho-Won;Chung, Kyung-Hoon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.108-108
    • /
    • 2011
  • Organometallic complexes containing unpaired spins, such as metalloporphyrin or metallophthalocyanine, have extensively studied with increasing interests of their promising model systems in spintronic applications. Additionally, the use of these complexes as an acceptor molecule in chemical sensors has recently received great attentions. In this presentation, we have investigated adsorption of nitric oxide (NO) molecules at Co-porphyrin molecules on Au(111) surfaces with scanning tunneling microscopy and spectroscopy at low temperature. At the location of Co atom in Co-porphyrin molecules, we could observe a Kondo resonance state near Fermi energy in density of states (DOS) before exposing NO molecules and the Kondo resonance state was disappeared after NO exposing because the electronic spin structure of Co-porphyrin were modified by forming a cobalt-NO bonding. Furthermore, we could locally control the chemical reaction of NO dissociations from NO-CoTPP by electron injections via STM probe. After dissociation of NO molecules, the Kondo resonance state was recovered in density of state. With a help of density functional theory (DFT) calculations, we could understand that the modified electronic structures for NO-Co-porphyrin could be occurred by metal-ligand hybridization and the dissociation mechanisms of NO can be explained in terms of the resonant tunneling process via molecular orbitals.

  • PDF

Characterization of Plasma Proteins from Bloods of Slaughtered Cow and Pig and Utilization of the Proteins as Adhesives (도축혈액 혈장 단백질의 특성 및 접착제로의 응용)

  • Park, Eun-Hee;Lee, Hwa-Hyoung;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • Simple and rapid method of purification of plasma proteins from bloods of slaughtered animals was developed and the proteins were applied to plywood products as a blood 히ue to utilize waste materials. Plasma protein was obtained by adding 2% trichloroacetic acid (TCA) or 0.6 N HCI as optimal concentration to the supernatant, after centrifugation of bloods. Molecular properties of beef and pig plasma proteins were examined on SDS-PAGE. Application of blood glue to plywood was quite satisfactory compared to the synthetic amino resin by tensile-shear test for the strength of adhesive bonding.

  • PDF

Improvement of Deformation Resistancy of Asphalt by Modification with Tire Rubber (타이어고무를 이용한 개질에 따른 아스팔트 변형저항성 향상 연구)

  • Hong, Young-Keun;Ko, Mun-Bo
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.72-81
    • /
    • 2008
  • Nowadays, modifying asphalt to improve the resistancy of plastic deformation or rutting on roads has been drawing attention. In this study, asphalts were modified with modifying agents and ground rubber from waste tire (GRT), and the effects of modifier and GRT on the properties of asphalt were analyzed. The Marshall stability of modified asphalt was increased by 98% and the tensile strength increased by 43% compared to straight asphalt. GRT played an important role in enhancing these properties. Viscosity tests, penetration tests and TMA analysis showed the deformation resistancy of modified asphalt. IR and GPC tests indicated that asphalt and modifier have similar chemical structures to each other, and chemical bonding between asphalt and modifier have occurred so that the molecular size lengthened.

Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures

  • Kim, Minkyung;Lee, Myungjin;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.581-586
    • /
    • 2014
  • The most stable adsorption structures and their corresponding energies of 4-pyridone, 4-hydroxypyridine, 2-pyridone and 2-hydroxypyridine have been investigated by Density Functional Theory (DFT) calculation and high-resolution photoemission spectroscopy (HRPES). We confirmed that between the two reaction centers of 4- and 2-pyridone, only O atom of carbonyl functional group can act as a Lewis base while both the two reaction centers of 4- and 2-hydroxypyridine (tautomers of 4- and 2-pyridone) can successfully function as a Lewis base. On the other hand, owing to their molecular structures, there is a remarkable difference between the adsorption structures of 4- and 2-hydroxypyridine. Through the analysis of the N 1s and O 1s core level spectra obtained using HRPES, we also could corroborate that two different adducts coexist on the surface at room temperature due to their activation energy investigating the coverage dependent variation of bonding configurations when these molecules are adsorbed on the Ge(100) surface.

Silk Fibroin/Chitosan Conjugate Crosslinked by Tyrosinase

  • Kang, Gyung-Don;Lee, Ki-Hoon;Ki, Chang-Seok;Nahm, Joong-Hee;Park, Young-Hwan
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.534-539
    • /
    • 2004
  • Two biopolymers, silk fibroin (SF) and chitosan, were conjugated by tyrosinase (EC 1.14.18.1), a polyphenolic oxidase, to improve their physicochemical properties, such as their thermal properties and morphological stabilities in organic solvents. The crosslinking between SF and chitosan took place mainly through Michael addition reactions. A main reaction between the amino groups in chitosan and o-quinone, the oxidation product of the tyrosyl residue in SF, was confirmed by UV spectroscopy. Measurements of viscosity and light scattering indicated that the crosslinked SF/chitosan conjugate was compact: it had a smaller particle size because of tight bonding forces between the SF and chitosan molecular chains. Thermal decomposition of SF/chitosan conjugates crosslinked by tyrosinase occurred at higher temperatures. The adhesiveness of the SF/chitosan conjugates decreased steadily as the crosslinking reaction progressed. We propose that this new crosslinking method be used for the preparation of silk fibroin/chitosan conjugates using tyrosinase. We expect that SF/chitosan conjugates crosslinked by tyrosinase can be used preferentially in biomedical applications because of its unique properties and non-toxicity.