• 제목/요약/키워드: molecular assembly

검색결과 333건 처리시간 0.034초

세포내인자로서의 정교한 기능을 하는 molecular chaperone (Molecular chaperone as a sophisticated intracellular membership)

  • 권오유;송민호
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.223-233
    • /
    • 1998
  • Molecular chaperone의 발견은 생명과학자들에게 살아있는 세포 내에서 어떻게 생체활성단백질이 만들어지고 유지되는지에 대한 자극과 함께 그것을 증명하기 위한 실험동기를 부여하였다. 초기에는 Molecular chaperone이 nucleosomes의 assembly에 관여하는 단백질을 설명하기 위하여 사용되었으나, 지금은 기본적인 세포생리기능의 하나인 단백질의 folding과 assembly를 돕는 assistant protein으로 주로 사용된다. 단백질합성 뿐만 아니라 단백질수송, oligomeric structure의 assembly와 disassembly, heat shock을 포함한 각종 내, 외부스트래스에 의해서 변성된 단백질의 세로내분화와 회복에도 Molecular chaperone이 관여하고 있다. 그러나 아직까지는 Molecular chaperone들의 3차구조와 그들간의 상호작용에 관한 정보가 부족하여 크게 진전되지 못하고 있지만, 많은 연구자에 의한 정보축적으로 인하여 빠른 시일 내에 Molecular chaperone에 세포내역할이 분명하게밝혀질 것이다.

  • PDF

세포내인자로서의 정교한 기능을 하는 molecular chaperone (Molecular chaperone as a sophisticated intracellular membership)

  • 권오유;송민호
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.226-226
    • /
    • 1998
  • Molecular chaperone의 발견은 생명과학자들에게 살아있는 세포 내에서 어떻게 생체활성단백질이 만들어지고 유지되는지에 대한 자극과 함께 그것을 증명하기 위한 실험동기를 부여하였다. 초기에는 Molecular chaperone이 nucleosomes의 assembly에 관여하는 단백질을 설명하기 위하여 사용되었으나, 지금은 기본적인 세포생리기능의 하나인 단백질의 folding과 assembly를 돕는 assistant protein으로 주로 사용된다. 단백질합성 뿐만 아니라 단백질수송, oligomeric structure의 assembly와 disassembly, heat shock을 포함한 각종 내, 외부스트래스에 의해서 변성된 단백질의 세로내분화와 회복에도 Molecular chaperone이 관여하고 있다. 그러나 아직까지는 Molecular chaperone들의 3차구조와 그들간의 상호작용에 관한 정보가 부족하여 크게 진전되지 못하고 있지만, 많은 연구자에 의한 정보축적으로 인하여 빠른 시일 내에 Molecular chaperone에 세포내역할이 분명하게밝혀질 것이다.

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • 김상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Molecular Design for the Formation of Two-dimensional Molecular Networks: STM Study of ${\gamma}$-phenylalanine on Au(111)

  • Jeon, A-Ram;Youn, Young-Sang;Lee, Hee-Seung;Kim, Se-Hun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.205-205
    • /
    • 2011
  • The self-assembly of ${\gamma}$-phenylalanine on Au(111) at 150 K was investigated using scanning tunneling microscopy (STM). Phenylalanine can potentially form two-dimensional (2D) molecular networks through hydrogen bonding (through the carboxyl and amino groups) and ${\pi}-{\pi}$ stacking interactions (via aromatic rings). We found that ${\gamma}$-phenylalanine molecules self-assembled on Au(111) surfaces into well-ordered structures such as ring-shaped clusters (at low and intermediate coverages) and 2D molecular domains (intermediate and monolayer coverages), whereas ${\alpha}$-phenylalanine molecules formed less-ordered structure on Au(111). The self-assembly of ${\gamma}$- but not ${\alpha}$-phenylalanine may be related to the flexibility of the carboxyl and amino groups in the molecule. Moreover, as expected, the 2D molecular network of ${\gamma}$-phenylalanine on Au(111) was mediated by a combination of hydrogen bonding and ${\pi}-{\pi}$ stacking interactions.

  • PDF

The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis

  • Morace, Graziella;Kusov, Yuri;Dzagurov, Georgy;Beneduce, Francesca;Gauss-Muller, Verena
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.678-683
    • /
    • 2008
  • The initial step during assembly of the hepatitis A virus particle is driven by domain 2A of P1-2A, which is the precursor of the structural proteins. The proteolytic removal of 2A from particulate VP1-2A by an as yet unknown host enzyme presumably terminates viral morphogenesis. Using a genetic approach, we show that a basic amino acid residue at the C-terminus of VP1 is required for efficient particle assembly and that host proteases trypsin and cathepsin L remove 2A from hepatitis A virus particles in vitro. Analyses of insertion mutants in the C-terminus of 2A reveal that this part of 2A is important for liberation of P1-2A from the polyprotein. The data provide the first evidence that the VP1/2A junction is involved in both viral particle assembly and maturation and, therefore, seems to coordinate the first and last steps in viral morphogenesis.

A One-Step System for Convenient and Flexible Assembly of Transcription Activator-Like Effector Nucleases (TALENs)

  • Zhao, Jinlong;Sun, Wenye;Liang, Jing;Jiang, Jing;Wu, Zhao
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.687-691
    • /
    • 2016
  • Transcription activator-like effector nucleases (TALENs) are powerful tools for targeted genome editing in diverse cell types and organisms. However, the highly identical TALE repeat sequences make it challenging to assemble TALEs using conventional cloning approaches, and multiple repeats in one plasmid are easily catalyzed for homologous recombination in bacteria. Although the methods for TALE assembly are constantly improving, these methods are not convenient because of laborious assembly steps or large module libraries, limiting their broad utility. To overcome the barrier of multiple assembly steps, we report a one-step system for the convenient and flexible assembly of a 180 TALE module library. This study is the first demonstration to ligate 9 mono-/dimer modules and one circular TALEN backbone vector in a one step process, generating 9.5 to 18.5 repeat sequences with an overall assembly rate higher than 50%. This system makes TALEN assembly much simpler than the conventional cloning of two DNA fragments because this strategy combines digestion and ligation into one step using circular vectors and different modules to avoid gel extraction. Therefore, this system provides a convenient tool for the application of TALEN-mediated genome editing in scientific studies and clinical trials.

Unprecedented Molecular Architectures by the Controlled Self-Assembly of ${\beta}$-Peptide Foldamer

  • Kwon, Sun-Bum;Lee, Hee-Seung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.204-204
    • /
    • 2011
  • During past decades, several types of peptide-based scaffolds, ranging from simple aromatic dipeptide to small protein fragments, have been studied to understand the underlying mechanism and mimic to create artificial nano/microstructures. However, a limited number of design principles have still been reported in peptidic scaffolds allowing well-defined self-assembled structure formation, presumably due to the intrinsic large conformational flexibility of natural peptides. In this presentation, we report the first example of highly homogeneous, well-defined and finite architectures by the ${\beta}$-peptide self-assembly.

  • PDF