• Title/Summary/Keyword: molecular and biological variation

Search Result 84, Processing Time 0.038 seconds

Morphological and molecular evidence of the hybrid origin of Crepidiastrum ×muratagenii in Korea (홍도고들빼기의 형태 다양성 및 잡종 기원의 분자 증거)

  • JANG, Young-Jong;PARK, Boem Kyun;SON, Dong Chan;CHOI, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.2
    • /
    • pp.85-96
    • /
    • 2022
  • The plant "Hong-do-go-deul-ppae-gi" has been considered as Crepidiastrum × muratagenii, a hybrid between C. denticulatum and C. lanceolatum, based on its morphological traits and geographical distribution. To reveal the hybrid origin of Hong-do-go-deul-ppae-gi, we examined additional morphological traits of this plant and its putative parents (C. denticulatum, C. lanceolatum, C. platyphyllum) and analyzed one nuclear ribosomal internal transcribed spacer (ITS) region and four chloroplast regions (trnT-L, trnL-F, rpl16 intron, and rps16 intron). As a result of examining the morphological traits, putative hybrid individuals were classified into three types based on the habit, cauline leaf, outer phyllary, and achene beak traits. A molecular analysis found that the ITS sequences of Type 1 and Type 2 individuals showed additive species-specific sites of C. denticulatum and C. lanceolatum. Plastid sequences of Type 1 and Type 2 individuals showed C. denticulatum and C. lanceolatum sequences, respectively. However, Type 3 individuals had ITS and plastid sequences corresponding to C. denticulatum. Accordingly, Type 1 and Type 2 individuals not only share morphological traits with C. denticulatum and C. lanceolatum but also show additive species-specific sites for C. denticulatum and C. lanceolatum, and not C. platyphyllum, supporting its origin as a hybrid between C. denticulatum and C. lanceolatum. Type 3 had morphological traits similar to other hybrid types but was distinguished with respect to outer phyllaries and demonstrated some resemblance to C. denticulatum. In a molecular analysis, Type 3 was found to be identical with regard to the sequence of C. denticulatum and was judged to be an ecological variation of C. denticulatum.

Assessment of Phenolic Content, Saponin Content, and Antioxidant Activities in Gray, Red, and White Adzuki Bean Germplasm: A Multivariate Analysis

  • Kebede Taye Desta;Hyemyeong Yoon;Myoung-Jae Shin;Sukyeung Lee;Xiaohan Wang;Yu-Mi Choi;Young-ah Jeon;YoungKwang Ju;JungYoon Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.147-166
    • /
    • 2023
  • Seed color is controlled by several genes and is a key trait in determining the metabolite content and biological activities of legume genotypes. In this study, 296 adzuki bean accessions, including 159 grey, 99 red, and 38 white adzuki beans, were grown in Korea. Variations in total phenolic content (TPC), total saponin content (TSC), DPPH scavenging activity, ABTS•+ scavenging activity, and ferric reducing antioxidant power (FRAP) were assessed and were reported to be in the ranges of 1.52-8.24 mg GAE/g, 14.36-114.22 mg DE/g, 0.23-12.84 mg AAE/g, 1.05-17.66 mg TE/g, and 0.59-13.14 mg AAE/g, respectively, with a wide variation across adzuki beans. Except for DPPH scavenging activity, the average values declined in the order gray > red > white adzuki beans, each demonstrating a significant variation (p < 0.05). White adzuki beans, which showed low metabolite content and antioxidant activity, were clearly separated from the gray and red genotypes using principal component and hierarchical cluster analyses. Moreover, TPC, TSC, and antioxidant activities were strongly correlated, regardless of seed color. Overall, the diversity of the TPC, TSC, and antioxidant activity in a broad population of adzuki bean genotypes was determined. Furthermore, this study found that seed color variation in adzuki beans had a significant effect on the metabolite content and antioxidant activity. Superior accessions with high levels of TPC, TSC, and antioxidant activity were also discovered and could be used for functional plant breeding and human consumption. The findings of this study may be useful for understanding the relationship between seed coat color and metabolite concentration in adzuki beans, paving the way for molecular-level analyses.

Variation in the Lipid Class and Fatty Acid Composition of Thraustochytrium aureum ATCC 34304 (Thraustochytrium aureum ATCC 34304의 지질 및 지방산 조성 변화)

  • Jeh, Eun-Jin;Song, Sang-Kyu;Seo, Jeong-Woo;Hur, Byung-Ki
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • The heterotrophic marine algae Thraustochytrium aureum ATCC 34304 produces substantial amount of polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA). In this study, changes in the lipid and fatty acid compositions of Thraustochytrium aureum ATCC 34304 were investigated according to the growth stage. The major lipids of Thraustochytrium aureum ATCC 34304 were found to be composed of triacylglyceride (TAG), phospholipid (PL), and sterol (ST). The content of triacylglyceride increased during the exponential phase of cell growth, but the content of phospholipid decreased. The composition of total polyunsaturated fatty acids decreased from 60.3% to 45.3% and that of docosahexaenoic acid from 42.1% to 33.9% in the triacylglyceride. The composition of total saturated fatty acids, however, increased from 24.9% to 27.8%. The content of total polyunsaturated fatty acids decreased greatly from 48.0% to 17.5% but the decrease in the content of saturated fatty acids was slight in phospholipid.

APPLICATION OF RANDOMLY AMPLIFIED POLYMORPHIC DNA(RAPD) ANALYSIS METHOD FOR CLASSIFICATION AND BREEDING OF THE KOREAN GINSENG

  • Lim Y.P.;Shin C.S.;Lee S.J.;Youn Y.N.;Jo J.S.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.138-142
    • /
    • 1993
  • Korean ginseng has been widely used as medicine from ancient times in Asia. Current breeding efforts in Korea include the individual plant selection and the subsequent pure - line isolation, and considerable number of lines with desirable traits have thus been isolated. However, there were rare data on genetic maker and its analysis for selection of superior varieties. For taxonomic characterization and development of genetic markers for ginseng breeding, molecular biological methods including the RFLP and RAPD methods were applied. Cytoplasmic DNA of ginseng was analyzed for RFLP analysis. However. there is no different pattern among the chloroplast DNA or mitochondrial DNA of variants. In the case of RAPD analysis, the band patterns using 4 of 10 RAPD primers show the distinctive polymorphism among 9 ginseng variants, and lines, and Similarity Index(SI) on polymorphism was calculated for the extent and nature of these variabilities in ginseng. The sequences of 4 selected primers were TGCCGAGCTG, AATCGGGCTG. GAAACGGGTG, and GTGACGTAGG. By SI based on the polymorphic band patterns, Chungkyung - Chong and Hwangskoog - Chong, and JakyungChong 81783 and Jinjakyung of Russia showed the most close SI. The data of KG10l coincided with the fact that it was released from Hwangskoog - Chong. and Jakyung - Chong 81783 and Jinjakyung of Russia showed the most close SI. The data of KG101 coincided with the fact that it was released from Hwangskoog - Chong by breeding process. The data of Jakyung strains indicated the significant variation among the strains. From these results, RAPD analysis method could be succesively applied to the classification and genetic analysis for breeding of Korean ginseng.

  • PDF

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

Analysis of Genetic Diversity of Korean Accessions of the Genus Acorus Using RAPD Markers and NIR Spectroscopy

  • Lee, Ja-Hyun;Kim, In-Seon;Lee, Seong-Gene;Rim, Kwang-Sub;Kim, Sung-Gil;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • The genus Acorus is known as an indigenous medicinal plant. Genetic diversity of thirteen accessions of A. calamus and eight of A. gramineus, with an accession of Colocasia antiquorum and two of Iris pseudacorus as outgroups, were evaluated using RAPD markers for cluster analysis and principal coordinate analysis, and NIR spectroscopic profiles for principal component analysis.A total of 371 polymorphic bands were obtained by using the selected 12 random primers. The genetic distances were estimated from 0.03 to 0.31 within A. calamus and from 0.03 to 0.51 within A. gramineus. The dendrogram and three-dimensional plot separated the accessions into four distinct groups (A. calamus, A. gramineus, C. antiquorum, and I. pseudacorus). Moreover, for the diversity among genus Acorus, eleven A. calamus accessions, one A. gramineus accession, and two I. pseudacorus accessions were non-destructively analyzed from their leaves by NIR spectroscopy, which discriminated Acorus accessions like the RAPD analysis. Interestingly, thirteen accessions of A. calamus were clustered into two groups based on RAPD and NIR analyses, which indicates that there are two ecotypes of A. calamus in Korea. An accession (CZ) of A. calamus with yellow stripe on leaves was closely grouped with another (CX) at a genetic distance (GD) of 0.03, which shows that the stripe trait might be generated by chimeric mutation. The genetic distance between A. calamus and A. gramineus was revealed to be farthest from 0.80 to 0.88 GD. In genus Acorus the genetic diversity and genetic variation were identified by using RAPD marker technique and non-destructive NIRs.

Genetic Characteristics of 207 Microsatellite Markers in the Korean Population and in other Asian Populations

  • Choi, Su-Jin;Song, Hye-Kyung;Jeong, Jae-Hwan;Jeon, In-Ho;Yoon, Ho-Sung;Chung, Ki Wha;Won, Yong-Jin;Choi, Je-Yong;Kim, Un-Kyung
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.301-304
    • /
    • 2008
  • Microsatellites, short tandem repeats, are useful markers for genetic analysis because of their high frequency of occurrence over the genome, high information content due to variable repeat lengths, and ease of typing. To establish a panel of microsatellite markers useful for genetic studies of the Korean population, the allele frequencies and heterozygosities of 207 microsatellite markers in 119 unrelated Korean, Indian and Pakistani individuals were compared. The average heterozygosity of the Korean population was 0.71, similar to that of the Indian and Pakistani populations. More than 80% of the markers showed heterozygosity of over 0.6 and were valuable as genetic markers for genome-wide screening for disease susceptibility loci in these populations. To identify the allelic distributions of the multilocus genetic data from these microsatellite markers, the population structures were assessed by clustering. These markers supported, with the most probability, three clustering groups corresponding to the three geographical populations. When we assumed only two hypothetical clusters (K), the Korean population was separate from the others, suggesting a relatively deep divergence of the Korean population. The present 207 microsatellite markers appear to reflect the historical and geographical origins of the different populations as well as displaying a similar degree of variation to that seen in previously published genetic data. Thus, these markers will be useful as a reference for human genetic studies on Asians.

A new species of Bangiopsis: B. franklynottii sp. nov. (Stylonematophyceae, Rhodophyta) from Australia and India and comments on the genus

  • West, John A.;de Goer, Susan Loiseaux;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.101-109
    • /
    • 2014
  • Small red algae, especially those previously referred to as 'primitive' are often overlooked, but can be quite abundant. These 'primitive' red algae are now placed in several classes distinct from the Florideophyceae, for example the Stylonematophyceae. A brownish-red filamentous alga was collected from a sandy tide pool at Cape Tribulation, Queensland, Australia. Cultured specimens were identified as Bangiopsis and conformed to the morphological characters of the genus (multicellular base, erect filaments branched or unbranched, uniseriate to multiseriate-tubular, single multilobed purple-red to red-brown plastid with central pyrenoid, vegetative cells released directly as spores). Molecular data of two plastid genes (rbcL, psbA) support placement of the Australian isolate and isolates from India in Bangiopsis. The genetic variation between these isolates and isolates from Puerto Rico previously attributed to B. subsimplex indicates that these should be considered as a separate species. As the type locality is in the Atlantic Ocean, French Guiana, and not far from Puerto Rico, and the Puerto Rican isolate has been used often in phylogenetic analyses, we propose that the Indian and Pacific Ocean isolates be designated a new species, B. franklynottii, to acknowledge Ott's many years of research on inconspicuous freshwater and marine red algae. Our research also highlights the lack of careful descriptions in many of the records of this genus and the lack of morphological characters to distinguish species. Especially within the morphologically simple red algae, morphological distinctness does not necessarily reflect evolutionary divergences.

Minisatellite 5 of SLC6A18 (SLC6A18-MS5): Relationship to Hypertension and Evolutional Level (SLC6A18 유전자의 minisatellites 5 (SLC6A18-MS5)의 고혈압과의 관련성 및 진화적 의미)

  • Heo, Chang-Hwan;Lee, Sang-Yeop;Seol, So-Young;Kwon, Jeong-Ah;Jeong, Yun-Hee;Chung, Chung-Nam;SunWoo, Yang-Il
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1733-1738
    • /
    • 2008
  • SLC6A18, one of the neurotransmitters, was reported the possible relationship to hypertension, and it contained eight blocks of minisatellites. In this study, SLC6A18-MS5 sequence which showed the highest heterozygosity among seven minisatellites was analyzed using the Transfac software, the putative binding sites for the transcription factor Pax4 and HNF4 were discovered as a result. The HNF4 is involved in the diabetes pathway and suggested the relationship to hypertension. Thus, we investigated the putative functional significance of allelic variation in this minisatellites with respect to susceptibility for hypertension. To address this possibility, we analyzed genomic DNA from the blood of 301 hypertension-free controls and 184 cases with hypertension. A statistically significant association was not identified between the allelic distribution of SLC6A18-MS5 and occurrence of hypertension. We then examined the meiotic segregation of SLC6A18-MS5 and it was transmitted following Mendelian inheritance. Therefore, this locus could be useful markers for paternity mapping and DNA fingerprinting. Moreover, we undertook a comprehensive analysis of the genomic sequence to address the evolutionary events of these variable repeats. SLC6A18 minisatellites regions are only conserved in human and primates. This result suggestedthat intronic minisatellites analysis is powerful evolution marker for the non-coding regions in primates and can provide a great insight to the molecular evolution of repeated region in primates.

Replication of the Association of the 6q22.31c Locus near GJA1 with Pulse Rate in the Korean Population

  • Kim, Nam-Hee;Kim, Young-Jin;Oh, Ji-Hee;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • Pulse rate is known to be related to diverse phenotypes, such as cardiovascular diseases, lifespan, arrhythmia, hypertension, lipids, diabetes, and menopause. We have reported two genomewide significant genetic loci responsible for the variation in pulse rate as a part of the Korea Association Resource (KARE) project, the genomewide association study (GWAS) that was conducted with 352,228 single nucleoride polymorphisms typed in 8,842 subjects in the Korean population. GJA1 was implied as a functionally causal gene for pulse rate from the KARE study, but lacked evidence of replication. To re-evaluate the association of a locus near GJA1 with pulse rate, we looked up this signal in another GWAS conducted in a Health Examinee-shared cohort of 3,703 samples. Not only we were able to confirm two pulse rate loci (1q32.2a near CD46 and 6q22.13c near LOCL644502) identified in the KARE GWAS, we also replicated a locus (6q22.31c) near GJA1 by the lookup in the Health Examinee GWAS. Considering that the GJA1-encoded protein is a major component of cardiac gap junctions, a functional study might be necessary to validate its genuine molecular biological role in the synchronized contraction of the heart.