Browse > Article
http://dx.doi.org/10.11110/kjpt.2022.52.2.85

Morphological and molecular evidence of the hybrid origin of Crepidiastrum ×muratagenii in Korea  

JANG, Young-Jong (Division of Forest Biodiversity, Korea National Arboretum)
PARK, Boem Kyun (Division of Forest Biodiversity, Korea National Arboretum)
SON, Dong Chan (Division of Forest Biodiversity, Korea National Arboretum)
CHOI, Byoung-Hee (Department of Biological Sciences, Inha University)
Publication Information
Korean Journal of Plant Taxonomy / v.52, no.2, 2022 , pp. 85-96 More about this Journal
Abstract
The plant "Hong-do-go-deul-ppae-gi" has been considered as Crepidiastrum × muratagenii, a hybrid between C. denticulatum and C. lanceolatum, based on its morphological traits and geographical distribution. To reveal the hybrid origin of Hong-do-go-deul-ppae-gi, we examined additional morphological traits of this plant and its putative parents (C. denticulatum, C. lanceolatum, C. platyphyllum) and analyzed one nuclear ribosomal internal transcribed spacer (ITS) region and four chloroplast regions (trnT-L, trnL-F, rpl16 intron, and rps16 intron). As a result of examining the morphological traits, putative hybrid individuals were classified into three types based on the habit, cauline leaf, outer phyllary, and achene beak traits. A molecular analysis found that the ITS sequences of Type 1 and Type 2 individuals showed additive species-specific sites of C. denticulatum and C. lanceolatum. Plastid sequences of Type 1 and Type 2 individuals showed C. denticulatum and C. lanceolatum sequences, respectively. However, Type 3 individuals had ITS and plastid sequences corresponding to C. denticulatum. Accordingly, Type 1 and Type 2 individuals not only share morphological traits with C. denticulatum and C. lanceolatum but also show additive species-specific sites for C. denticulatum and C. lanceolatum, and not C. platyphyllum, supporting its origin as a hybrid between C. denticulatum and C. lanceolatum. Type 3 had morphological traits similar to other hybrid types but was distinguished with respect to outer phyllaries and demonstrated some resemblance to C. denticulatum. In a molecular analysis, Type 3 was found to be identical with regard to the sequence of C. denticulatum and was judged to be an ecological variation of C. denticulatum.
Keywords
chloroplast DNA; $Crepidiastrum{\times}muratagenii$; Crepidiastrum; hybrid; ITS; morphological traits;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jang, Y.-J. and B.-H. Choi. 2021. Taxonomic identity of Crepidiastrum ×nakaii recorded in Hongdo Island. Korean Journal of Plant Taxonomy 51: 198-204.   DOI
2 Kitamura, S. 1955. Compositae Japonicae. Pars Quarta. Memoirs of the College of Science, University of Kyoto, Series B 22: 77-126.
3 Aguilar, J. F., J. A. Rossello and G. N. Feliner 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Molecular Ecology 8: 1341-1346.   DOI
4 Alvarez, I. and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolition 29: 417-434.   DOI
5 Cho, M.-S., C.-S. Kim, S.-H. Kim, T. O. Kim, K.-I. Heo, J. Jun and S.-C. Kim. 2014. Molecular and morphological data reveal hybrid origin of wild Prunus yedoensis (Rosaceae) from Jeju Island, Korea: Implications for the origin of the flowering cherry. American Journal of Botany 101: 1976-1986.   DOI
6 Hoibova, E., J. Cizkova, P. Christelova, S. Taudien, E. de Langhe and J. Dolezel. 2011. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6: e17863.   DOI
7 Du, Z.-Y., C.-F. Yang, J.-M. Chen and Y.-H. Guo. 2009. Nuclear and chloroplast DNA sequences data support the origin of Potamogeton intortusifolius J.B. He in China as a hybrid between P. perfoliatus Linn. and P. wrightii Morong. Aquatatic Botany 91: 47-50.   DOI
8 Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.   DOI
9 Gil, H.-Y. and S.-C. Kim. 2016. Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island, Korea. Journal of Plant Research 129: 807-822.   DOI
10 White, T. J., T. Bruns, A. Lee and J. Tayler. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Application. Innis, M., D. Gelfand, J. Sninsky and T. White. (eds.), Academic Press, San Diego, Pp. 315-322.
11 Yamamoto, N., O. Yano. and H. Ikeda. 2009. A new hybrid, Crepidiastrum ×semiauriculatum (Asteraceae: Lactuceae), from Okayama Prefecture, Western Japan. Journal of Japanese Botany 84: 224-228.
12 Shin, H., S.-H. Oh, Y. Lim, C.-W. Hyun, S.-H. Cho, Y.-I. Kim and Y.-D. Kim. 2014. Molecular evidence for hybrid origin of Aster chusanensis, an endemic species of Ulleungdo, Korea. Journal of Plant Biology 57: 174-185.   DOI
13 Saito, Y., G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2003. Cytological comparisons of somatic chromosomes in ×Crepidiastrixeris denticulato-platyphylla and speculation of its parental species (Asteraceae). Chromosome Science 7: 43-48.
14 Siripun, K. C. and E. E. Schilling. 2005. Molecular confirmation of the hybrid origin of Eupatorium godfreyanum (Asteraceae). American Journal of Botany 93: 319-325.   DOI
15 Shih, C. and N. Kilian. 2011. Crepidiastrum. In Wu, Z.-Y., P. H. Raven and D.-Y. Hong (eds.) Flora of China, Vol. 20-21 (Asteraceae). Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 264-269.
16 Small, R. L., J. A. Ryburn, R. C. Cronn, T. Seelanan and J. F. Wendel. 1998. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany 85: 1301-1315.   DOI
17 Trifinopoulos, J., L.-T. Nguyen, A. von Haeseler and B. Q. Minh. 2016. W-IQ-TREE: A fast online phylogenetic tool for Maximum likelihood analysis. Nucleic Acids Research 44: W232-W235.   DOI
18 Ono, H and D. Sato. 1935. Intergenera hibridigo en Cichorieae, II. Hibridoj de Crepidiastrum lanceolatum var. latifolium kaj Paraixeris denticulata. Journal of Japanese Genetics 11: 169-178. (in Esperanto)
19 Li, W.-P. 2006. Natural hybridization between Aster ageratoides var. scaberulus and Kalimeris indica (Asteraceae): Evidence form morphology, karyotype, and ITS sequences. Botanical Studies 47: 191-197.
20 Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.   DOI
21 Rieseberg, L. H., N. C. Ellstrand and M. Arnold. 1993. What can molecular and morphological markers tell us about hybridization? Critical Reviews in Plant Sciences 12: 213-241.   DOI
22 Sang, T., D. J. Crawford and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 6813-6817.   DOI
23 Lee, T. B. 1969. Plant resources in Korea. Bulletin of Seoul National University (Biological Agriculture) 20: 158. (in Korean)
24 Saito, Y., M. Moller, G. Kokubugata, T. Katsuyama, W. Marubashi and T. Iwashina. 2006. Molecular evidence for repeated hybridization events involved in the origin of the genus ×Crepidiastrixeris (Asteraceae) using RAPDs and ITS data. Botanical Journal of the Linnean Society 151: 333-343.   DOI
25 Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109.   DOI
26 Nieto Feliner, G., B. Gutierrez Larena and J. Fuertes Aguilar. 2004. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Annals of Botany 93: 189-200.   DOI
27 Ohashi, H. and K. Ohashi. 2007. Hybrids in Crepidiastrum (Asteraceae). Journal of Japanese Botany 82: 337-347.
28 Oxelman, B., M. Liden and S. Berglund. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematic and Evolution 206: 393-410.   DOI
29 Pak, J.-H. and S. Kawano. 1992. Biosystematic studies on the genus Ixeris and its allied genera (Compositae-Lactuceae) (IV): Taxonomic treatments and nomenclature. Memoirs of the Faculty of Science, Kyoto University, Series of Biololgy 15: 29-61.
30 Schwarzbach, A. E. and L. H. Rieseberg. 2002. Likely multiple origin of a diploid hybrid sunflower species. Molecular Ecology 11: 1703-1715.   DOI
31 Liu, S.-C., C.-T. Lu and J.-C. Wang. 2009. Reticulate hybridization of Alpinia (Zingiberaceae) in Taiwan. Journal of Plant Research 122: 305-316.   DOI
32 Kilian, N., B. Gemeinholzer and H. W. Lack. 2009. Cichorieae. In Systematics, Evolution and Biogeography of Compositae. Funk, V. A., A. Susanna, T. F. Stuessy and R. J. Bayer (eds.), International Association for Plant Taxonomy, Vienna. Pp. 343-383.
33 Kokubugata, G., T. Kurihara, Y. Hirayama and K. Obata 2011. Molecular evidence for a natural hybrid origin of Ajuga ×mixta (Lamiaceae) using ITS sequence. Bullein of the National Museum of Nature and Science, Series B 37: 175-179.
34 Wendel, J. F., A. Schnabel and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America 92: 280-284.   DOI
35 Lee, W. T. 1996. Lineamenta Florae Koreae. Academy Publishing Co, Seoul. 1688 pp. (in Korean)
36 Les, D. H., N. M. Murray and N. P. Tippery. 2009. Systematics of two imperiled pondweeds (Potamogeton vaseyi, P. gemmiparus) and taxonomic ramifications for subsection Pusilli (Potamogetonaceae). Systematic Botany 34: 643-651.   DOI
37 Minh, B. Q., M. A. T. Nguyen and A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188-1195.   DOI