• 제목/요약/키워드: molecular adjuvant

검색결과 95건 처리시간 0.025초

Induction of anti-aquaporin 5 autoantibodies by molecular mimicry in mice

  • Lee, Ahreum;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.211-217
    • /
    • 2020
  • Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren's syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequence of PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope "E" and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund's adjuvant. The concentrations of the antibodies in sera were measured using enzyme-linked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only the immunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.

Molecular identification of the vaccine strain from the inactivated bovine viral diarrhea virus (BVDV) vaccines

  • Yang, Dong-Kun;Kim, Ha-Hyun;Cho, Soo-Dong;Choi, Sung-Suk;Kim, Jae-Jo;Song, Jae-Young
    • 한국동물위생학회지
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Since the 1980's, several kinds of inactivated bovine viral diarrhea virus (BVDV) vaccines have been used to immunize domestic animals such as cattle and goat in Korea. Immunogenicity of the BVDV vaccines has been checked by the Korean Veterinary Authority using laboratory animals. In this study, we applied a molecular method to investigate the genetic characterization of the BVDV genes in six commercial inactivated BVDV vaccines, and determined the efficiency of two extraction reagents (i.e., sodium citrate or isopropyl myristate) to separate the vaccine antigens from the antigen/adjuvant complexes. Six partial non-coding regions (288 bp) were successfully amplified with specific primer sets, which demonstrated that sodium citrate is more efficient in extracting viral RNA from inactivated gel vaccines than isopropyl myristae. In addition, we identified the virus strains from the vaccines by analyzing the nucleotide sequences of the 5' non-coding region (NCR) of BVDV. The nucleotide similarity of the partial 5' NCR ranged from 95.1 to 100% among BVDV vaccine strains, respectively, indicating that a few manufacturers used different BVDV strains to produce their vaccines.

Elucidating Bottlenecks to the Efficient Preparation of AB5-Hexamer Mucosal Adjuvant Protein LTm by Genetic Engineering

  • Liu, Di;Hu, Fabiao;Wang, Wenpeng;Wu, Dong;He, Xiujuan;Zheng, Wenyun;Liu, Haipeng;Ma, Xingyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권8호
    • /
    • pp.1461-1471
    • /
    • 2017
  • Escherichia coli heat-labile enterotoxin (LT) and its non-toxic mutant (LTm) are well-known powerful mucosal adjuvants and immunogens. However, the yields of these adjuvants from genetically engineered strains remain at extremely low levels, thereby hindering their extensive application in fundamental and clinical research. Therefore, efficient production of these adjuvant proteins from genetically engineered microbes is a huge challenge in the field of molecular biology. In order to explore the expression bottlenecks of LTm in E. coli, we constructed a series of recombinant plasmids based on various considerations and gene expression strategies. After comparing the protein expression among strains containing different recombinant plasmids, the signal sequence was found to be critical for the expression of LTm and its subunits. When the signal sequence was present, the strong hydrophobicity and instability of this amino acid sequence greatly restricted the generation of subunits. However, when the signal sequence was removed, abundantly expressed subunits formed inactive inclusion bodies that could not be assembled into the hexameric native form, although the inclusion body subunits could be refolded and the biological activity recovered in vitro. Therefore, the dilemma choice of signal sequence formed bottlenecks in the expression of LTm. These results reveal the expression bottlenecks of LTm, provide guidance for the preparation of LTm and its subunits, and certainly help to promote efficient preparation of this mucosal adjuvant protein.

Development and Clinical Evaluation of Dendritic Cell Vaccines for HPV Related Cervical Cancer - a Feasibility Study

  • Ramanathan, Priya;Ganeshrajah, Selvaluxmy;Raghanvan, Rajalekshmi Kamalalayam;Singh, Shirley Sundar;Thangarajan, Rajkumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5909-5916
    • /
    • 2014
  • Human papillomavirus infection (HPV) and HPV related immune perturbation play important roles in the development of cervical cancer. Since mature dendritic cells (DCs) are potent antigen-presenting cells (APC), they could be primed by HPV antigens against cervical cancers. In this study we were able to generate, maintain and characterize, both phenotypically and functionally, patient specific dendritic cells in vitro. A randomized Phase I trial with three arms - saline control (arm I), unprimed mature DC (arm II) and autologous tumor lysate primed mature DC (arm III) and fourteen patients was conducted. According to WHO criteria, grade 0 or grade one toxicity was observed in three patients. One patient who received tumor lysate primed dendritic cells and later cis-platin chemotherapy showed a complete clinical response of her large metastatic disease and remained disease free for more than 72 months. Our findings indicate that DC vaccines hold promise as adjuvant sfor cervical cancer treatment and further studies to improve their efficacy need to be conducted.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo.

  • Qi-rui Hu;Yao Pan;Han-cheng Wu;Zhen-zhen Dai;Qing-xin Huang;Ting Luo;Jing Li;Ze-yuan Deng;Fang Chen
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.173-182
    • /
    • 2023
  • Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.

Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination

  • Kim, Sae-Hae;Lee, Kyung-Yeol;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.165-175
    • /
    • 2012
  • Vaccination is one of the most effective methods available to prevent infectious diseases. Mucosa, which are exposed to heavy loads of commensal and pathogenic microorganisms, are one of the first areas where infections are established, and therefore have frontline status in immunity, making mucosa ideal sites for vaccine application. Moreover, vaccination through the mucosal immune system could induce effective systemic immune responses together with mucosal immunity in contrast to parenteral vaccination, which is a poor inducer of effective immunity at mucosal surfaces. Among mucosal vaccines, oral mucosal vaccines have the advantages of ease and low cost of vaccine administration. The oral mucosal immune system, however, is generally recognized as poorly immunogenic due to the frequent induction of tolerance against orally-introduced antigens. Consequently, a prerequisite for successful mucosal vaccination is that the orally introduced antigen should be transported across the mucosal surface into the mucosa-associated lymphoid tissue (MALT). In particular, M cells are responsible for antigen up-take into MALT, and the rapid and effective transcytotic activity of M cells makes them an attractive target for mucosal vaccine delivery, although simple transport of the antigen into M cells does not guarantee the induction of specific immune responses. Consequently, development of mucosal vaccine adjuvants based on an understanding of the biology of M cells has attracted much research interest. Here, we review the characteristics of the oral mucosal immune system and delineate strategies to design effective oral mucosal vaccines with an emphasis on mucosal vaccine adjuvants.

Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice

  • Afonso-Cardoso, Sandra R.;Rodrigues, Flavio H.;Gomes, Marcio A.B.;Silva, Adriano G.;Rocha, Ademir;Guimaraes, Aparecida H.B.;Candeloro, Ignes;Favoreto, Silvio;Ferreira, Marcelo S.;Souza, Maria A. de
    • Parasites, Hosts and Diseases
    • /
    • 제45권4호
    • /
    • pp.255-266
    • /
    • 2007
  • The protective effect of the Synadenium carinatum latex lectin (ScLL), and the possibility of using it as an adjuvant in murine model of vaccination against American cutaneous leishmaniasis, were evaluated. BALB/c mice were immunized with the lectin ScLL (10, 50, 100$[\mu}g$/animal) separately or in association with the soluble Leishmania amazonensis antigen (SLA). After a challenge infection with $10^6$ promastigotes, the injury progression was monitored weekly by measuring the footpad swelling for 10 weeks. ScLL appeared to be capable of conferring partial protection to the animals, being most evident when ScLL was used in concentrations of 50 and 100${\mu}g$/animal. Also the parasite load in the interior of macrophages showed significant reduction (61.7%) when compared to the control group. With regard to the cellular response, ScLL 50 and 100 ${\mu}g$/animal stimulated the delayed-type hypersensitivity (DTH) reaction significantly (P < 0.05) higher than SLA or SLA plus ScLL 10 weeks after the challenge infection. The detection of high levels of IgG2a and the expression of mRNA cytokines, such as IFN-$\gamma$, IL-12, and TNF-$\alpha$ (Th1 profiles), corroborated the protective role of this lectin against cutaneous leishmaniasis. This is the first report of the ScLL effect on leishmaniasis and shows a promising role for ScLL to be explored in other experimental models for treatment of leishmaniasis.

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy

  • Kim, Jaeho;Lee, Heung Kyu
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.356-362
    • /
    • 2021
  • An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.