• Title/Summary/Keyword: mole cricket

Search Result 32, Processing Time 0.021 seconds

Molecular Cloning of the Sec61p ${\gamma}$ Subunit Homologue Gene from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Eun-Sun;Lee, Heui-Sam;Ahn, Mi-Young;Sohn, Hung-Dae;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The Sec61 trimeric complex ($\alpha$,$\beta$, and ${\gamma}$ subunits) is one of the Sec-complex responsible for post-translational protein translocation across the endoplasmic reticulum membrane in diverse organisms. In this study, a cDNA encoding the Sec61p ${\gamma}$ subunit homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. Sequence analysis of a 442-bp cDNA clone showed it to contain an open reading frame of 68 amino acid residues consisted of 204-bp. The homologues of the gene were found in the GenBank database in a diverse organism including insect, mammals, fungi, and plants. The deduced amino acid sequence of Sec61p ${\gamma}$ subunit homologue of the mole cricket showed the highest homology to the gene of the singly known insect, Drosophila melanogester (93% identity), and the least homology to that of the baker's yeast, Saccharomyces cerevisiae (37.2%). Phylogenetic analysis also confirmed a close relationship between the insect Sec61p ${\gamma}$ subunit homologues of G. orientalis and D. melanogester. Hydropathy analysis of the cricket mole and published other data suggested that the hydrophobic segment close to C-terminus is predicted to be the putative membrane anchor, Multiple alignment of the Sec61p ${\gamma}$ subunit homologue among several organisms showed the presence of several conserved domains including the conserved proline at position 28.

Molecular Cloning and Expression of a cDNA Encoding Putative Chemosensory Protein from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Ryu, Kang-Sun;Kim, Jin-Woo;Ahn, Mi-Young;Lee, Heui-Sam;Sohn, Hung-Dea;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • We describe here the cloning, expression and characterization of a cDNA encoding a putative chemosensory protein (CSP) from the mole cricket, Gryllotalpa orientalis. The G. orientalis chemosensory protein cDNA sequences comprised of 384 bp with 128 amino acid residues. The G. orientalis chemosensory protein showed 75.4% protein sequence identity to the Locusta migratoria CSP, Northern blot analysis revealed that signal was stronger in head than leg and cuticle, indicating that the head part containing antennae is a main site for G. orientalis chemosensory protein synthesis. The cDNA encoding G. orientalis chemosensory protein was expressed as approximately 12 kDa polypeptide in baculovirus-infected insect cells.

cDNA Sequence and mRNA Expression of a Putative Glutathione S-Transferase from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Jin-Won;Ryu, Kang-Sun;Ahn, Mi-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.157-162
    • /
    • 2003
  • The glutathione S-transferase (GSTs) are enzymes responsible for the protection of cells from chemical toxicants and oxidative stress. We describe here the cDNA sequence and mRNA expression of a putative GST from the mole cricket, Gryllotalpa orientalis. The G. orientalis GST cDNA sequences comprised of 621 bp encoding 207 amino acid residues. The multiple sequence alignment of G. orientalis GST gene with other known insect GSTs showed several conserved residues that may be essential for the enzymatic activity of the protein. Phylogenetic analysis of the deduced amino acid sequences of G. orientalis GST gene with other insect GST sequences revealed that the G. orientalis GST gene belongs to class I GST, forming a strong monophyletic group (100% bootstrap value) exclusively for class I GSTs from a diverse insect species. Northern blot analysis confirmed midgut-specific expression at transcriptional level, evidencing the midgut as a site for GST synthesis.

Molecular Cloning of the Myosin Light Chain-2 cDNA of Gryllotalpa orientalis

  • Cha, So Young;Hwang, Jae Sam;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.127-130
    • /
    • 2004
  • We describe here the cloning and characterization of a cDNA encoding a putative myosin light chain-2 (MLC-2) from the mole cricket, Gryllotalpa orientalis. The G. orientalis MLC-2 cDNA sequences comprised of 615 bp with 205 amino acid residues with a calculated molecular weight of approximately 23 kDa. The deduced protein sequence of G. orientalis MLC-2 cDNA showed 64% and 54% identity to Drosophila melanogaster MLC-2 and D. yakuba MLC-2, respectively. Northern blot analysis confirmed the muscle-specific expression of G. orientalis MLC-2.

Molecular Cloning of the cCDNA for $NAD^+$ /-dependent 15-hydroxyprostagladin Dehydrogenase Gene Homologue from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Young-Sin;Kim, Eun-Sun;Lee, Heui-Sam;Kim, Jin-Won;Ahn, Mi-Young;Ryu, Kang-Sun
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.67-67
    • /
    • 2003
  • The NAD$^{+}$-dependent 15-hydroxyprostagladin dehydrogenase (15-PGDH) is a key catabolic enzyme responsible for the control of the biological activities of prostagladins. So far the gene has been found in a diverse organism including three insect dipteran species and one lepidopteran species. In this study, a cDNA encoding the 15-PGDH gene homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. (omitted)d)

  • PDF

Molecular Cloning of the cDNA for Glutathione S-transferase Gene Homologue from the Mole Cricket, Gryllotalopa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Kim, Jin-Won;Ryu, Kang-Sun;Sohn, Hung-Dae;Jin, Byung-Rae
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.68-68
    • /
    • 2003
  • The glutathione-S-transferases (GSTs) are enzymes responsible for the protection of cells from chemical toxicants and oxidative stress. In insects, GSTs have been particularly known to be implicated in the resistance to insecticides. In this study, a cDNA encoding the GST gene homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. (omitted)

  • PDF

The Oviposition Period, Emergence Period, and Flight Activity of the African Mole Cricket(Gryllotalpa africana Palisct do Beauvois) Adult Damaging Ginseng Plants (인삼 해충, 땅강아지 ( Gryllotalpa africana Palisot do Beauvois) 성충의 산란기, 우화기 및 비산활동)

  • 김기황;김상석;손준수
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.119-122
    • /
    • 1989
  • phenological study on the oviposition, emergence, and flight activity of the African mole cricket adult has been made to obtain basic information for management of pest populations in ginseng fields. The flight activity, as monitored by the blarklight trap, seemed to be initiated depending on the sunset time and lasted about 2-2.5 hours. The trap data (1984-1988) showed that the adult flight of the species occurred twice a year, from early May to late June(Spring flight) and from late August to mid October(Fall flight) during which usually more crickets were trapped than during the former period. The number of females trapped was greater than that of males regardless to the flight period, i.e., females comprised 72.2%, 83.9%, and 73.3% of the total catches in 1984, 1985, and 1986, respectively. Adults emerged from late August to mid October and laid eggs from mid May to mid July the next year, indicating that the spring and fall flights correspond to the oviposition and emergence period, respectively.

  • PDF

Ginseng Damage by the African Mole Cricket, Gryllotalpa africana Palisot de Beauvois (땅강아지에 의한 인삼의 피해)

  • 김기황
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.379-385
    • /
    • 1992
  • Ginseng damage by the African mole cricket (GTyllotalpa africana Palisot de Beauvois) was investigated in the field and laboratory from 1984 to 1991. Ginseng damage by G. africana occurred mainly in the 2nd year ginseng fields during May and June (spring period), and the damage was not nearly recognized in September and October (fall period) when densities of G. africana adults were higher in the field. In the laboratory and field cage, damage of 2nd year ginseng considerably decreased during fall period, which had no relation to ginseng diameter, and 3rd year ginseng was not damaged at all. Soil hardness seemed to influence on ginseng damage by G. africana adults.

  • PDF

cDNA Sequence and mRNA Expression of a Putative Alcohol Dehydrogenase from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Lee, Young-Sin;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • Alcohol dehydrogenases (AHDs) are enzymes responsible for the catalysis of the reversible conversion of various alcohols to their corresponding aldehydes and ketonesis. Until now cDNA sequences of ADH gene is informed exclusively from several diptean species. We describe here the cDNA sequence and mRNA expression of a putative ADH gene from the mole cricket, Gryllotalpa orientalis, and phylogenetic relationships among known insect ADHs. The G. orientalis ADH cDNA sequences comprised of 798 bp encoding 266 amino acid residues. The multiple sequence alignment of G. orientalis ADH gene and known dipteran ADHs shared 100% identity in the nine amino acid residues that are important for the enzymatic activity in Drosophila melanogaster. Percent sequence identity ranged from 25% to 32% among all insect ADHs including both types of ADHs. G. orientalis ADH gene showed no clear resemblance to any dipteran species and type. Phylogenetic analysis of the deduced amino acid sequences of G. orientalis ADH gene with available dipteran ADH genes including both types of ADHs further confirmed that the G. orientalis ADH gene is not clearly assigned to either type of ADHs. Northern blot analysis revealed a stronger signal in the fat body than midgut and epidermis, indicating that the fat body possibly is a main site for the synthesis of the G. orientalis ADH protein.