• Title/Summary/Keyword: molding Method of Model

Search Result 104, Processing Time 0.027 seconds

Easy Molding Technique of Methylmethacrylate Implant Using Plaster and Rapid Prototyping Model in Cranioplasty (두개골 성형술에서 석고와 신속조형모델을 이용한 간단한 Methylmethacrylate 삽입물 제작법)

  • Park, Ki Rin;Kim, Yong-Ha;Kim, Tae Gon;Lee, Jun Ho;Ha, Ju Ho
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.125-129
    • /
    • 2012
  • Purpose: Methylmethacrylate is the most commonly used alloplastic material in cranioplasty. However during the polymerization of methylmethacrylate, a significant exothermic reaction takes place. This reaction may result in thermal injury to the brain tissue and other soft tissues. Also it is difficult to make three-dimensional methylmethacrylate implant that is perfectly matched to the defect during the operation time. We report on the molding technique of methylmethacrylate implant using plaster mold and the rapid prototyping model in cranioplasty. Methods: A 44-year-old male was referred to the department for severe frontal hollowness. He was involved in an automobile accident resulting in large frontal bone defect with irregular margin. The preformed patient-specific methylmethacrylate implant was made using plaster mold and the rapid prototyping model before the operative day. The methylmethacrylate implant was placed in the frontal defect and rigidly fixed with miniplates and screws on the operative day. Results: The operation was performed in an hour. In the 6 months follow-up period, there were no complications. Patient was satisfied with the results of cranioplasty. Conclusion: Safe cranioplasty was performed with the preformed patient-specific methylmethacrylate implant using plaster mold and the rapid prototyping model. The result of this method was satisfactory, aesthetically and functionally.

Prediction of Residual Stress Caused by IML Process and Deformation Due to Thermal Impact (IML 성형과정에 따른 잔류응력 및 열 충격에 의한 변형 예측)

  • Lee, Jae-Won;Jang, Eu-Gene;Shin, Seung-Won;Park, Seung-Ho;Chung, Ha-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.375-382
    • /
    • 2010
  • In this study, we developed a method to predict the residual stress distribution and thermal deformation caused by in-mold labeling (IML) processes. IML is one of the injection molding processes for injecting a material into a cavity and subsequently inserting a decorated film. The IML process can yield products with decorations of outstanding excellent quality in only one working step. Although the IML process has various advantages, it causes defects such as film delamination, wash-out, and flow marks. In particular, deformation is considered to be a major concern in terms of delamination. To validate the model, the deformation predicted by using a numerical model was compared with experimental results, and both results showed good agreement. We verified that the developed method can be used to obtain the design guidelines for preventing delamination in the initial design stage of the IML process.

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.

An Efficient Decision Maki ng Method for the Selectionof a Layered Manufacturing (3차원 조형장비 선정을 위한 효율적인 의사결정 방법)

  • Byun, Hong-Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • The purpose of this study is to provide a decision support to select an appropriate layered manufacturing(LM) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model far molding, material property, build time and part cost that greatly affect the performance of LM machines. However, the selection of a LM is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate LM machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify LM machines that the users consider After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of LM machines.

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Drop Simulation of Puppy Robot by Toys Safety Standards (완구 안전검사 기준을 적용한 강아지 로봇의 낙하 해석)

  • Chung Tae-Eun;Kim Jun-Gi;Sin Hyo-Chol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.710-713
    • /
    • 2005
  • Many impact or drop test researches of home appliances are published, but those of toys cannot be found easily. External impacts are the primary causes of fracture of toys. For impact proof design, the finished product should pass an impact test after molding design. There are several international toy safety standards or requirements such as US CPSC(Consumer Product Safety Commission), ASTM F963-96a, EN71 and so on. The puppy robot which patrols around the house, namely, the watchdog was selected to investigate toy safety because it has considerable weight and outer panels are made of plastics. First the model of watchdog robot was obtained by 3 dimensional scan. Surface data can be generated from 3D polygon data of the watchdog. A reliable drop simulation method for the watchdog was established using Pam-crash program according to Korean toy safety standards. When there is a low impact allowance value, the molding design should be reinforced or changed. It was found that the maximum impact stress reaches the ultimate stress of panel material.

  • PDF

A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques (3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

DIMENSIONAL CHANGE AND FLEXURAL STRENGTH IN COMPLETE DENTURES FABRICATED BY INJECTION MOLDING AND CONVENTIONAL COMPRESSION PROCESSING (의치상용 레진의 전입 방법에 따른 중합체적변화와 굴곡강도에 관한 연구)

  • Choi Hoon-Dal;Kwon Kung-Rock;Kim Hyeong-Seob;Choi Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.478-486
    • /
    • 2005
  • Statement of problem : Fracture and dimensional change of an acrylic resin denture are a rather common occurrence. Purpose : The purpose of this study was to compare differences in dimensional changes and flexural strength of separate maxillary complete dentures after immediate deflasking by injection molding and conventional compression processing. Material and method: To evaluate dimensional stability, the maxillary dentures were fabricated by using different materials and methods. Lucitone 199(Dentsply Trubyte. york, pennsylvania, USA) and Vertex(Dentimex, zeist, Netherlands) were used as materials. Compression and injection packing methods were used as processing methods. The impression surface of the dentures was measured by 3D Scann-ing System(PERCEPTRON USA) and overlapped original impression surface of the master cast. To evaluate flexural strength, resin specimens were made according to the different materials, powder/liquid ratio and processing methods. Flexural strength of the complete resin specimens (64mm$\times$10mm$\times$3.3mm) were measured by INSTRON 4467. (INSTRON, England) The data was analyzed by ANOVA, t-test and Tukey test. (p<.05 level of significance) Result: The results were as follows 1. There was no significant differences between master model and denture base for each group in overall dimensional changes. 2. Palatal area was more stable than flange or alveolar area in dimensional stability. but. there was no significant differences among each area. 3. Materials and power/liquid ratio had an effect on flexural strength. (P<.05) Especially materials was most effective. (P<.05) 4. Lucitone 199(powder/liquid ratio followed by manufacturer's direction) showed higher flexural strength than Vertex. Conclusion : Dimensional stability or flexural strength are affected by materials rather than packing techniques.

The Effect of Trunk Position on the Stress Distribution of Low-back and on the Spondylolisis (I) -Development on the Photoelastic Experimental Model and Device for the Stress Analysis of Low-Lumbar Spine- (체간 위치가 하요추부의 응력상태와 척추분리증에 미치는 영향 (I) -하요추부의 응력 상태 측정용 광탄성 실험 모델 재료개발과 장치개발-)

  • 황재석;최영철;안면환;권재도;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.723-736
    • /
    • 1992
  • Most degeneating diseases and back pains in the orthopaedic disease are originated from the unbalance of stress distribution in the low-lumbar spine. Therefore the stress analysis of lowerback is indispensible to the clinical diagnosis for the developing reason and the developing process of diseases. Therefore the same model materials as following are eveloped to analyze the stress distributions of lower-back by photoelastic experiment. The verterbral body and the process are molded from epoxy resin(the weight ratio of Araldite and hardner is 10 to 3), models are geometrically identical to them in vivo respectively and the ratio of their elastic modulus to that of model material is 1 to 10. It is assured that KE-1300 Silicon(E=0.8MPa), TSE-3562 Silicon(0.5MPa) and the composite silicon(3MPa) (the weight ratio of KE-1300 silicon and Jioreal : 10 to 4) are respectively effective as the model materials of ligament, musles and intervertevral disc which is essential to the movement of low-lumbar spine. All the elements associated with the movement of the low-lumbar spine are molded through the molding method developed in this research and assembled with the angles between the verterbra and the disc in the normal human lumbosacral spine. The stress distributions of the assembled model are analyzed by photoelastic experiment. It is certified by comparing the results of photoelastic experimebt with the clinical situations that the loading dveice and the loading conceptions used in this paper are effective.

The Influence of Experiment Variables on 3D Printing using ABS Resin (ABS 수지로 3D Printing 시 실험변수들의 영향)

  • Kang, Yong-Goo;Lee, Tae-Won;Shin, Geun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.94-101
    • /
    • 2017
  • Recently, the small quantity batch production method has come into the spotlight as there are more plastic processing methods. At the same time, the 3D printer market has become globally widespread due to expired 3D printer patents. In particular, the FDM method is widely used for cheap products and materials. However, the FDM scheme is not as good as the injection molding method for quality and strength. This study investigated the effect of the internal filling and strength according to layer thickness to search for the optimum printing of the factors (infill and layer thickness) that determine the strength of the model.