• 제목/요약/키워드: molding Analysis

검색결과 887건 처리시간 0.031초

탁상용 소형 사출 성형기 개발 (Developed Compact Injection Molding Machine for Desktop)

  • 이병호;신동화
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발 (Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products)

  • 이상헌;이건우
    • 한국CDE학회논문집
    • /
    • 제1권2호
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제14권3호
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

금형 내부 압력 최소화를 위한 자동차 인스트루먼트 패널의 게이트 위치 최적화 (Gate Locations Optimization of an Automotive Instrument Panel for Minimizing Cavity Pressure)

  • 조성빈;박창현;표병기;최동훈
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.648-653
    • /
    • 2012
  • Cavity pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations of valve gates to minimize the maximum cavity pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the computational time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm equipped in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum cavity pressure was reduced by 17.3% compared to the initial one, which clearly showed the validity of the proposed design approach.

가변 금형온도 제어기법을 적용한 사출금형의 냉각성능 고찰 (Investigation of Cooling Performance of Injection Molds Using Pulsed Mold Temperature Control)

  • 손동휘;박근
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.35-41
    • /
    • 2013
  • 금형온도는 사출성형시 수지의 유동특성이나 성형품의 변형에 영향을 미치는 중요한 변수로서, 고온의 수지 주입과 냉각회로에 주입되는 냉각수의 영향을 받아 사출 사이클이 반복될수록 온도의 상승과 하강이 반복되는 주기적인 변화특성을 가지고 있다. 본 연구에서는 금형 냉각회로에 저온과 고온의 유체를 번갈아 주입하는 가변 금형온도 제어기법을 적용하여 성형전에는 금형온도를 높게 유지하고 성형후에는 낮게 유지함으로써 사출성형시 품질과 생산성을 동시에 높일 수 있는 연구를 수행하였다. 특히 열전달-유동해석을 연계한 다중사이클 사출성형 과도해석을 수행하여 수지와 금형, 냉각수간의 과도적인 온도변화를 수치적으로 고찰하였고, 기존 냉각방법과의 해석결과를 비교하여 제안된 가변 금형온도 제어기법의 가열 및 냉각과정에서의 효율성을 비교하였다.

CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각 (Rapid cooling of injection mold for high-curvature parts using CO2 cooling module)

  • 이세호;이호상
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

나노초 레이저 가공을 활용한 초소수 표면 특성을 가지는 사출 금형에 관한 연구 (A Study on the Injection Mold with Superhydrophobic Surface Properties Using Nanosecond Laser Machining)

  • 박정래;김혜진;박지영;성시명;홍서연;송기혁
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.48-54
    • /
    • 2023
  • In this study, an injection mold with ultra-small surface properties was manufactured using nanosecond laser processing. A superhydrophobic characteristic analysis was performed on the PET specimen manufactured through this. To this end, a hydrophobic pattern was defined using the Cassie-Baxter model. The defined features were selected with a spot diameter of 25um and pitch spacing of 30um and 35um. As a result of the basic experiment, it was confirmed that the fine pattern shape had an aspect ratio of 1:1 when the pitch interval was 35um and 20 iterations. Through the determined processing conditions, a hydrophobic pattern was implemented on the core surface of KP4. A specimen with a hydrophobic pattern was produced through injection molding. The height of the molded hydrophobic pattern is 20 ㎛ less than the depth of the core and the contact angle measurement results are 92.1°. This is a contact angle smaller than the superhydrophobic criterion. Molding analysis was performed to analyze the cause of this, and it was analyzed that the molding was not molded due to the lack of pressure in the injection machine.

양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구 (Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides)

  • 이동원;김상윤;김지우;김종수;이성희
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.

CAE와 실험계획법을 연계한 사출 성형 시스템 최적화에 관한 연구 (A Study on Optimization of Injection-molded System Using CAE and Design of Experiment)

  • 오정열;허용정
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.271-277
    • /
    • 2006
  • 사출 성형 공정은 저비용으로 고품질의 제품을 대량으로 얻을 수 있는 제조 공정이지만. 성형품의 품질에 영향을 주는 인자의 수가 너무 많아 모든 경우에 대하여 실험을 수행하는 것은 시간적, 경제적으로 불가능하다. 따라서 최근에 시뮬레이션 도구를 활용하여 이러한 실험을 보조하고 있고, 실험계획법 및 여러 가지 최적화 기법들이 다루어지고 있다. 인자수가 많은 경우 각 입력인자 간의 교호작용 등도 고려하면서도 실험 횟수를 줄이는 기법으로 정립된 실험계획법을 적용하여 시뮬레이션 소프트웨어를 이용한 모의 실험 데이터를 도출하였으며, 이를 바탕으로 주변의 잡음에서도 강건한 설계를 할 수 있는 다구찌 기법을 사출 성형 공정에 적용하여 최적의 사출 성형 공정 조건을 나타내었다.

  • PDF

연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성 (Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser)

  • 신호준;유영태;오용석
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.