• 제목/요약/키워드: molding Analysis

검색결과 886건 처리시간 0.028초

광픽업용 비구면 렌즈 사출성형 공정의 수치해석 (Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device)

  • 박근;한철엽
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

사출성형의 충전조건 선정에 관한 연구 (A study of estimation of filling phase condition in injection molding process)

  • Jo, Y.M.;Kwon, O.J.;Kim, J.D.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.110-118
    • /
    • 1995
  • The filling phase analysis of the injection molding process for thermoplastics was applied to predict pressure, themperature and shear stress in the test mold, and the results were compared with the experiment using 30% glass fiber added ABS resin. The finite difference method was used in the analysis considering the effects of heat transfer between molten polymer and mold wall, and also frictional heating by shear flow. The analysis results were considered as a method to improve the quality and the productivity of injection molding process. Using the analysis results, the molding factors such as mold-ability of polymers, performance of injection molding machine, positioning of gate and dimendsioning of runner in the injection molding process can be estimated at the design stage of mold for good quality and productivity.

  • PDF

페트용기 성형을 위한 프리폼 사출성형 및 블로우 성형의 실험 및 해석에 관한 연구 (Study on numerical analysis and experiment of the injection/ blow molding of a preform of PET Bottle)

  • 김정순;김종덕;김옥래;권창오
    • 한국산학기술학회논문지
    • /
    • 제9권5호
    • /
    • pp.1119-1124
    • /
    • 2008
  • 본 연구는 성형해석 및 실험적 방법을 통하여 페트 용기의 두께 편차를 최소화하기 위한 프리폼 최적화 설계를 수행하였다. 사출성형과정을 정확하게 묘사하기 인하여 3차원 모델을 이용하여 충진, 보압 및 냉각해석을 통하여 최적의 프리폼 설계변수를 설정하였으며, 이 결과를 이용하여 블로우 성형해석을 수행하였다. 성형해석결과를 평가하기 위한 사출성형 및 블로우 성형 실험을 수행하였으며, 실험결과와 해석결과는 정성적으로 일치하는 것을 확인하였다. 이러한 실험결과 데이타를 설계에 반영함으로서 최적의 프리폼 형상을 얻을 수가 있었다.

충전과 보압과정이 사출성형공정에 미치는 영향에 관한 연구 (A Study on the Effects of Filling and Packing Phases on Injection Molding Process)

  • 김현필;김용조
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.44-53
    • /
    • 2002
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for the filling and packing phases. Molding troubles like flow mark weld line, sink ma가 short shot and warpage car be caused by these injection molding process factors. Among them the short shot was caused by the fact that the packing pressure could not reach properly to the filling end part in the packing phase and hence the flow rate could not be supplied to the full. In addition as the flow rate for the volumetric shrinkage during the f개zen phase could not be supplied Properly by the packing pressure, the short shot appeared. Here, the volumetric shrinkage reduced with increasing the packing pressure and also the warpage of molded part increased with increasing the packing Pressure.

트레일링 암 생산용 LFT-D 시스템에서의 압축성형 해석 (Compression Molding Analysis of LFT-D System for Vehicle Trailing Arm)

  • 박보규;정진우;정한규;박시우;하동수;최현열
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.133-138
    • /
    • 2017
  • Recently, CFRP composites are widely used as lightweight materials have with excellent mechanical properties and can beare widely used in various fields. In general, thermosetting resins are used for CFRP. However, in recent years, studies have been carried out using thermoplastic resins have been actively carried out to overcome the disadvantages of thermosetting resins. The LFT-D system is a molding method in which a fiber is directly cut to a the desired length while being impregnated with a thermoplastic resin to produce a compound and that is then press-molding molded to form the product. In this paper, before the production of the trailing arm, the compression molding analysis was carried out in order to grasp the problems that may occur during production. Through cCompression molding analysis was applied to calculate of the minimum press pressure and to compare and analysis analyze the molding conditions characteristic required to formfor forming the trailing arm.

사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발 (Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

이색 사출성형기 개발을 위한 유압시스템의 특성 검토 (Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

분말사출성형 충전공정에 대한 수치모사 모델 (Modeling of Numerical Simulation in Powder Injection Molding Filling Process)

  • 권태현;강태곤
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.245-250
    • /
    • 2002
  • In this paper we presented numerical method for the simulation of powder injection molding filling process, which is one of the key processes in powder injection molding. Rheological properties of powder binder mixture such as slip phenomena and yield stress were introduced into the numerical analysis model of powder injection molding filling simulation. Numerical model can be classified into two types. One is 2.5D model which can be introduced to a arbitrary thin geometry and the other is full 3D model which can be applied to a general 3D shape. For 2.5D model we showed the validity of our CAE system with several verification examples. Finally we suggested flow analysis model for 3D powder injection molding filling simulation.

In-Plane형 마이크로니들의 미세사출공정해석 ([ μ ]-Injection Molding Process Analysis for In-Plane Microneedle)

  • 강정진;허영무;정태성;이성희
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.491-495
    • /
    • 2005
  • Micro injection molding analysis for microneedle fabrication was performed in the present study. The dimensions of width and thickness for in-plane microneedle are $600{\mu}m$, $500{\mu}m$, respectively. A delivery system based on guidelines for traditional injection molding was designed for four-cavities molding system. To investigate the effects of processing conditions in the mirconeedle fabrication, injection molding analysis using commercial code was performed. It was shown that the total injection time has a significant effect on the fabrication of in-plane microneedles.

플라스틱 마이크로니들의 미세사출성형공정에 대한해석 (Analysis of Micro Injection Molding Process for Polymeric Microneedle Fabrication)

  • 이성희;강정진;허영무;정태성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.55-59
    • /
    • 2005
  • Micro injection molding analysis for microneedle fabrication was performed in the present study. The dimensions of width and thickness for microneedle are 600um, 500um, respectively. A delivery system based on guidelines for traditional injection molding was designed for four-cavities molding system. To investigate the effects of processing conditions in the mirconeedle fabrication, injection molding analysis using commercial code was performed. It was shown that the total injection time has a significant effect on the fabrication of microneedles.

  • PDF