• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.025 seconds

Monitoring Hazards to Verify the Safety of Plant-Based Meat Alternatives (식물성 대체육의 안전성 검증을 위한 위해요소 모니터링)

  • Ayeong Ma;Eun Sung Shin;Seon-A Son;Tai-Sun Shin;Hyun-Jung Chung
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.83-94
    • /
    • 2024
  • The proportion of plant-based meat alternative (PBMA) consumers has recently increased in Korea. This is due to several reasons including protecting the environment, satisfying preferences, maintaining health, and improving eating habits. Accordingly, many companies produce and sell alternative meat using various materials. Alternative meats are classified into plant (such as soybeans and wheat), seaweed, insect, and cultured meats, depending on the raw materials used in manufacturing. PBMA is sold after undergoing processes such as grinding, seasoning, and molding. Therefore, monitoring the presence of any hazardous elements during this process is essential. Accordingly, in this study, we analyzed the harmful components of nine domestically distributed PBMA that are most easily accessible to consumers. After extracting fat from the samples and analyzing the rancidity level, samples F, G, and I were highly rancid. Trace amounts of aflatoxin were detected in samples A and B, but confirmed to be within the range. Cd and Pb were not detected in any sample. We hope that this study will help establish methods to ensure the safety of domestically sold PBMA.

Production of Pellet Fertilizer from the Sludge of Thermophilic Aerobic Oxidation System End Its Effects on the Growth of Chinese cabbage and Soil Properties (고온 호기성 산화 시스템의 슬러지로부터 펠렛 비료의 생산과 Chinese cabbage의 생육 및 토양 특성에 대한 영향)

  • Lee Won Il;Hirotada Tsujii;Lee Myung Gyu
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • A solid of Thermophilic Aerobic Oxidation(TAO) System was mixed with sawdust or a rice husks. After fermentation was finished, molding machine and a dryer were used, and pellet fertilizer was produced. The fertilizing experiment was carried out as five pieces by Bed soil, TAO solid(TAO-S), TAO pellet fertilizer(TAO-PF), Chemical fertilizer(NPK) and Control(no fertilizer). Growth rate of the Chinese cabbage by each treatment was examined. Analysis of microbe and soil characteristic before and after crop experiment were carried out. When the moisture contents of TAO-PF were $18\%$ and $25\%$, the occurrence rate of microbes for the storage time was increased to $80\%$ and $100\%$ respectively. However, in the $12\%$ of water content treatment was not increased microbes. The concentration of soil bacteria in TAO-PF and TAO-S for 15 day after treatment was $1.5\times10^7\~8.0\times10^7$ CFU/ml, and the concentration of bacteria for 50 day was increased to $6.3\times10^7$ and $8.3\times10^7$ CFU/ml. However, Fungus decreased. The concentration of Actinomycetes was increased in TAO solid, Bed soil and TAO-PF treatment. The TAO-S and TAO-PF treatment were normal to compare to the NPK treatment. In this experiment the height and width of the Chinese cabbage were 22.3 cm, 16.8 cm in Bed soil and 28.8 cm, 21.3 cm in TAO solid. The leaf number of TAO-S, TAO-PF and NPK treatment were similar to 39.8, 38.3, 40.3 sheet. As the result, the TAO-PF knew that use was possible with fertilizer.

  • PDF

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

A Study on the Development of Plastic Floater for Solar Power Plant on a Body of Water (수상 태양광 발전을 위한 플라스틱 부유체 개발에 관한 연구)

  • Jeong, Kwang-Soo;Jung, In Jun;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.283-290
    • /
    • 2020
  • In this study, a floater was developed for a frame-type solar power plant. The floater supports the frame and the solar panels. A finite element analysis was performed to design its shape and thickness, and the floater was manufactured by a rotational molding method using linear low-density polyethylene. It was found that the floater did not cause collapse and it maintained its stiffness even at 4 times the maximum load of 322.7 kgf. To perform a long-term compression test, a weight-type load application device that uses gravity was designed and manufactured. The amount of compressive deformation was measured for 7 days, and a long-term deformation equation was obtained. Even under small loads, continuous deformation was observed. However, the 10-year deformation amount for a constant load of 100 kgf was predicted to be small at about 4.64 mm. As a result, it was found that the developed floater could be used in a solar power plant on a body of water.

Respiratory Health of Foundry Workers Exposed to Binding Resin (RESIN 취급 주물공장 근로자들의 호흡기 건강에 관한 연구)

  • Choi, Jung-Keun;Rhee, Chang-Ok;Paek, Do-Myung;Choi, Byung-Soon;Shin, Yong-Chul;Chung, Ho-Keun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.2 s.46
    • /
    • pp.274-285
    • /
    • 1994
  • The effects of resin on the respiratory health have been investigated in 309 workers from four iron and steel foundries and the results compared with those from 122 workers who were not significantly exposed to resin gas and silica dust at the same industries. Phenol-formaldehyde resin was used in the core making and molding processes and workers were exposed to their decomposition products as well as to silica dust containing particulates. The subjects were grouped according to formaldehyde, dust and other gas exposures, and smoking habits were considered also in thi analysis. Standardized respiratory symptom questionnaire was administered by trained interviewers. Chest radiograph, pulmonary funtion tests, and methacholine challenge tests were done. Environmental measurements at the breathing zone were carried out to determine levels of formaldehyde, respiable dust and total dust. Foundry workers had a higher prevalence of symptoms of chronic bronchitis with chronic phlegm and chronic cough when exposed to dust. Exposure to gas was significantly associated with lowered $FEV_1$ and obstructive pulmonary function changes. Exposure to formaldehyde and phenol gas was associated with wheezing symptom among workers, but $FEV_1$ changes after methacholine challenge were not significantly different among different exposure groups. When asthma was defined as the presence of bronchial hyperreactivity with more than 20% decrease in $FEV_1$ after methacholine challenge, 17 workers out of 222 tested had asthma. Fewer asthmatic welters were found among groups exposed to formaldehyde, gas and dust, which indicates a healthy worker effects ill a cross-sectional study. The concentration of formaldehyde gas ranged from 0.24 to 0.43 ppm among studied foundries. The authors conclude that formaldehyde and phenol gas from combusted resin is probably the cause of asthmatic symptoms and also a selection force of those with higher bronchial reactivity away from exposures.

  • PDF

Investigating the potential exposure risk to indium compounds of target manufacturing workers through an analysis of biological specimens (생물학적 노출평가를 통한 타겟 제조업 근로자의 공정별 인듐 노출위험성 조사)

  • Won, Yong Lim;Choi, Yoon Jung;Choi, Sungyeul;Kim, Eun-A
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.263-271
    • /
    • 2014
  • Objectives: Along with the several cases of pulmonary disorders caused by exposure to indium that have been reported in Japan, China, and the United States, cases of Korean workers involved in processes that require handling of indium compounds with potential risk of exposure to indium compounds have also been reported. We performed biological monitoring for workers in various target manufacturing processes of indium, indium oxide, and indium tin oxide(ITO)/indium zinc oxide(IZO) in domestic factories. Materials: As biological exposure indices, we measured serum concentrations of indium using inductively coupled plasma mass spectrometry, and Krebs von den Lungen 6(KL-6) and surfactant protein D(SP-D) using enzyme-linked immunosorbent assays. We classified the ITO/IZO target manufacturing process into powdering, mixing, molding, sintering, polishing, bonding, and finishing. Results: The powdering process workers showed the highest serum indium level. The mixing and polishing process workers also showed high serum indium levels. In the powdering process, the mean indium serum concentration in the workers exceeded $3{\mu}g/L$, the reference value in Japan. Of the powdering, mixing, and polishing process workers, 83.3%, 50.0%, and 24.5%, respectively, had values exceeding the reference value in Japan. We suppose that the reason of the higher prevalence of high indium concentrations in powder processing workers was that most of the particles in the powdering process were respirable dust smaller than $10{\mu}m$. The mean KL-6 and SP-D concentrations were high in the powdering, mixing, and polishing process workers. Therefore, the workers in these processes who were at greater risk of exposure to indium powder were those who had higher serum levels of indium, as well as KL-6 and SP-D. We observed significant differences in serum indium, KL-6, and SP-D levels between the process groups. Conclusions: Five among the seven reported cases of "indium lung" in Japan involved polishing process workers. Polishing process workers in Korea also had high serum levels of indium, KL-6, and SP-D. The outcomes of this study can be used as essential bases for establishing biological monitoring measures for workers handling indium compounds, and for developing health-care guidelines and special medical surveillance in Korea.

Fabrication and Characterization of the Carbon Fiber Composite Sheets (탄소섬유를 이용한 열가소성 복합재료 시트 제조 및 특성)

  • Lee, Yun-Seon;Song, Seung-A;Kim, Wan Jin;Kim, Seong-Su;Jung, Yong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.168-175
    • /
    • 2015
  • Recently, the applications of carbon fiber reinforced plastics (CFRPs) have become broader than ever when it comes to such industries as automotive, ships, aerospace and military because of their lightweight-ness and high mechanical properties. Thermosetting plastics like epoxy are frequently used as the binding matrix in CFRPs due to their high hardness, wetting characteristics and low viscosity. However, they cannot melted and remolded. For this reason, thermosetting plastic wastes have caused serious environmental problems with the production of fiber reinforced plastics. Thus, many studies have focused on the carbon fiber reinforced thermoplastics (CFRTPs) and recycling carbon fiber. In this study, recycled carbon fiber (RCF) was prepared from CFRPs using a pyrolysis method, which was employed to separate resin and carbon fiber. The degree of decomposition for epoxy resin was confirmed from thermal gravimetric analysis (TGA) and scanning electron microscope (SEM). The RCF was cut and ground to prepare a carbon fiber composite sheet (CFCS). CFCS was manufactured by applying recycled carbon fibers and various thermoplastic fibers. Various characterizations were performed, including morphological analyses of surface and cross-section, mechanical properties, and crystallization enthalpy of CFCS at different cooling conditions.

Scientific Analysis of Firing Characteristics for Walls and Rooftiles Excavated from Jeseoksa Dump-site, Iksan (익산 제석사지 폐기유적 벽체 및 기와의 피열특성)

  • Ahn, Kyoung Suk;Lee, Min Hye;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.567-578
    • /
    • 2021
  • In this study, the physicochemical properties of 21 wall fragments and rooftile pieces excavated from Jeseoksa Dump-site were analyzed, and the possibility of heat exposure, such as the fire reported in the literature, was investigated by estimating the firing temperature. From the results, it was estimated that the rooftiles were composed of refined materials, and the walls were composed of materials having different particle sizes depending on the layer. Unlike ordinary rooftiles and walls, they exhibited an uneven surface with traces of bloating phenomenon in the cross section. It was estimated from the blackening of some portions that firing was not performed in a controlled state in a constant firing environment. In addition, the estimated firing temperature showed that the non-overfired rooftiles had endured a firing temperature of 900℃ or less, but the over-fired samples were subjected to a temperature of 1,000℃ or higher and were fired at a temperature higher than the manufacturing temperature at that time. Additionally, the rooftiles probably became defective during firing or molding at the time of production, but the non-overfired rooftiles exhibited an intact shape and showed the possibility of heat exposure due to fire. Therefore, the analytical results of this study confirm that the defective architectural components damaged by the fire, as reported in the literature, were discarded in the Jeseoksa dump-site.

A Study on the Production Techniques and Raw Material Characteristics of Clay Bodhisattva Excavated from the Neungsan-ri Temple Site Using CT (CT 조사를 통한 부여 능산리사지 출토 소조보살상의 제작 기법과 재료적 특성 연구)

  • Shin Yeonhong;Ro Jihyun;Kim Jiho;Park Haksoo
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.153-162
    • /
    • 2023
  • Clay figure of Baekje, produced by forming and molding various shapes using clay, are mainly excavated from temple sites and provide essential information for studying the Buddhist art of Baekje. Research on clay figures of Baekje primarily focuses on the characteristics of Baekje-era temples in which such figures are excavated, as well as the role and production techniques of clay figures, by comparing regional and morphological characteristics. In particular, research on the manufacturing method of clay figures is mainly carried out by visual observation, whereas precise scientific analysis is required to understand production techniques and characteristics of raw materials in greater detail. In this study, to confirm such production techniques and material characteristics, computed tomography (CT) scans were conducted on the Clay Bodhisattva excavated from the Neungsan-ri Temple site in Buyeo. As a result, it was found that the Clay Bodhisattva was made using a cylindrical core of fine clay, tied together with several thin branches or reeds with straws. The clay used in the figure bore traces indicating the presence of herbaceous plants, which increase adhesion between clay and prevent cracks in the contraction process. On the other hand, the density of the fine clay differs on the inside and outside of the clay figure. Based on this, it is presumed that the clay was applied around the cylindrical core to shape the Clay Bodhisattva. The clay was reapplied on top of the figure to express the detailed shape and pattern.

A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib (리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구)

  • Young-Hoon Lee;Bum-Jin Park;Eui-Chul Jung;Jung-Gil Oh;Seok-Guwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.