• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.026 seconds

Real-time TVOC Monitoring System and Measurement Analysis in Workplaces of Root Industry (뿌리산업 작업장내 총휘발성유기화합물류(TVOC) 실시간 노출감시체계 구축과 농도 분석)

  • Jong-Hyeok, Park;Beom-Su, Kim;Ji-Wook, Kang;Soo-Hee, Han;Kyung-Jun, Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.425-434
    • /
    • 2022
  • Objectives: This study analyzes TVOC concentrations in root industry workplaces in order to prevent probable occupational disease among workers. Root industry includes all the infrastructure of manufacturing, such as casting and molding. Methods: Real-time TVOC sensors were deployed in three root industry workplaces. We measured TVOC concentrations with these sensors and analyzed the results using a data-analysis tool developed with Python 3.9. Results: During the study period, the mean of the TVOC concentrations remained in an acceptable range, 0.30, 2.15, and 1.63 ppm across three workplaces. However, TVOC concentrations increased significantly at specific times, with respective maximum values of 4.98, 28.35, and 26.65 ppm for the three workplaces. Moreover, the analysis of hourly TVOC concentrations showed that during working hours or night shifts TVOC concentrations increased significantly to higher than twice the daily mean values. These results were scrutinized through classical decomposition results and autocorrelation indices, where seasonal graphs of the corresponding classical decomposition results showed that TVOC concentrations increased at a specific time. Trend graphs showed that TVOC concentrations vary by day. Conclusions: Deploying a real-time TVOC sensor should be considered to reflect irregularly high TVOC concentrations in workplaces in the root industry. It is expected that the real-time TVOC sensor with the presented data analysis methodology can eradicate probable occupational diseases caused by detrimental gases.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Analysis on Characteristics and Related Factors of Indoor Air Quality in Newly Built Wooden Houses (신축목조주택의 실내공기질 특성 및 관련요인 분석)

  • Choi, Yoon-Jung;Lee, Jae-Kyung;Cha, Ye-Rang
    • Journal of the Korean housing association
    • /
    • v.26 no.4
    • /
    • pp.23-32
    • /
    • 2015
  • The purpose of this research is to analyze characteristics and related factors of IAQ (Indoor Air Quality) in newly built wooden houses by measuring pre and post occupancy. The subjects were five wooden houses which were built with similar materials and completed from July to December 2013. Measuring factors were TVOC, HCHO, PM10, $CO_2$, CO, indoor temperature, and relative humidity. As the result of pre occupancy measuring, the houses that revealed the lowest TVOC concentration or HCHO concentration were satisfied with "the standard for newly built apartment houses". Therefore, IAQ by the wooden structures is considered to be in good condition. However, in cases of partial value exceeded the standard, the reason is analyzed to be the materials of molding, wrapping doors, built-in closet, or kitchen furniture, etc. rather than structure materials. Most PM10 concentration level showed slightly below "the standard for occupied multi-use facilities". Remaining of construction dust was considered to be the reason. As the result of post occupancy measuring, every value except of one subject's TVOC concentration was lower than pre occupancy, explaining the importance of natural ventilation.

Development of Ultra-compact LED Package and Analysis of Defect Type (극소형 LED 패키지의 개발과 불량 유형의 분석)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.23-29
    • /
    • 2017
  • This paper introduces the mold technology for the development of ultra-compact package of less than 1mm, and also analyze the error pattern of the results using this mold technology. The existing ultra-small mold structure was one-piece, which caused the surface of EDM to be rough and increase the error rate. This has been an obstacle to further reducing the size of the mold. On the other hand, the proposed mold technology tries to overcome the limitation of the one-piece type by using the prefabricated type method. This paper also classify defect patterns in the results of the proposed mold structure and analyze the occurrence probability of each pattern to use as a basic data to develop a detector.

Analysis on the Fire Accident of Vehicle Due to Damage of the Vehicle's Electrical Components (차량 전장부품 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.32-38
    • /
    • 2015
  • In this paper, we analyzed the vehicle fire accidents due to damage of vehicle's electrical components, which is applied to a vehicle. In recent development of electrical components technology, approximately 40% of vehicle manufacturing parts have applied electronic circuit technology. Phenomenon such deterioration of insulating performance or electric breakdown on the vehicle's electrical components and printed circuit boards(PCBs) resulted from moisture, contamination and aging due to repetitive operations, lead to the vehicle fire. Therefore, the application of electrical components with adequate electric capacity for vehicle and usage of molding techniques using a non-combustible materials to shut off the oxygen should be applied in order to prevent vehicle fire due to damage of the electrical components and PCBs.

A Knowledge-Based CAD System for the Synthesis of Supplementary Features in Injection Molded Parts (사출성형제품의 부형상 설계를 위한 지식형 CAD 시스템에 관한 연구)

  • 허용정;김상국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1933-1947
    • /
    • 1991
  • The synthesis of supplementary features of injection molded parts has been done empirically, since it requires profound knowledge about the features' moldability and causal effects on the properties of the part, which are not available to designers through current CAD systems. RIBBER is a knowledge module which contains knowledge to permit non-experts as well as mold design experts to generate acceptable supplementary features of injection molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, RIBBER, for mold feature synthesis and appropriate CAE programs for mold design analysis to an existing geometric modeler in order to provide designers, at the initial design stage, with comprehensive process knowledge-based CAD system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

Topography Analysis in High Speed Working by Flat Endmill (엔드밀에 의한 고속가공시 표면형상 해석)

  • Bae, H.J.;Lee, S.J.;Seo, Y.B.;Park, H.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • High speed machining system have been used in industrial because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study proposed to decide best manufacturing cutting condition for surface roughness and rapid manufacturing tune by using computer Image processing system and 3D modelling. Until the 16,000 rpm, the surface roughness is decreased rapidly, but it is not over that. The 22,000 rpm is the spindle speed with the optimum surface in the high speed end-milling. In the case of the feed rate with 2,000 mm/mm and 8,000 mm/mm, the surface roughness is better than 4,000 mm/min and 6,000 mm/min. By using the 3D modelling, it is effectively represented shape characteristics of working surface m high speed end-milling.

  • PDF

A Study on Design Method Using CNC in Wooden Products (CNC를 이용한 목제품 디자인 기법에 관한 연구)

  • Lee, Young-Choon
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.4
    • /
    • pp.371-379
    • /
    • 2017
  • This study established the scope of the main contents and interpretation of wooden product design using the CNC manufacturing technology as well as the basic concepts of which were defined, accordingly. After coming up with the definition of the CNC wood manufacturing technology from the academic point of view, a design study, using the practical CNC manufacturing technology, was conducted by analyzing and summarizing the contents of each process. In addition, data research and analysis including review on literatures and case studies of existing products were promoted besides design development through application of the design concepts, ergonomics, principle of molding, etc. Ultimately, this study suggested the step-by-step procedure in design drawing, 3D modeling, CAD/CAM data production, CNC manufacturing, and prototype completion together with figures. Through this, the study proposed a standard manufacturing guideline for wood product design using digital manufacturing technology. Base on such efforts, the advantages and points for improvement in product design using CNC manufacturing technology and the future direction of development were forwarded. Meanwhile, a prototype image that was developed through collaborative efforts between the academic circle and field workers was presented to help the case study on the wooden product design technique using CNC.

Development and Possibility Evaluation of Thermal Imaging Camera for Medical Monitoring of Body Temperature (열화상카메라 개발을 통한 의료용 체열진단 가능성 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • Recently, thermography camera have been using for body-temperature monitoring. We report on fabrication of prototype thermography camera using the chalcogenide-glass lens and the camera test by analysis of thermal image. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ with noise equivalent temperature difference(NETD) of 87.7mK. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Design and Performance Test of the Shoe Holder Spring of the Axial Piston Pump (액셜 피스톤 펌프의 슈 홀드 스프링 설계 및 성능시험)

  • Chun, Young-Jun;Choi, Jin-Ho;Chung, Hee-Taeg;Lee, Sang-Chan;Kim, Tae-Il;Kim, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2228-2236
    • /
    • 2002
  • The axial piston pump by which the mechanical energy is converted into hydraulic energy has been widely used in a press, a injection molding machine and construction equipments due to the high specific power compared to the electric power system. In this paper, the one-piece shoe holder spring of the axial piston pump to simplify its structure and reduce this manufacturing cost was designed and tested. The finite element analyses using the 3-D shell element and contact element were performed to determine the thickness, width and initial angle of the shoe holder spring. Also, the compressive tests of the shoe holder spring were performed and their results were compared with those of the finite element analysis. Also, the performance and endurance limit of axial piston pump with the shoe holder spring were tested and evaluated.