• Title/Summary/Keyword: molding Analysis

Search Result 887, Processing Time 0.026 seconds

Development of rapid mold heating & cooling technology to remove weldline on surface appearance in telephone case (전화기 케이스 외관의 Weldline 제거를 위한 금형 급속 가열-냉각 기술 개발)

  • Cha, B.S.;Park, H.P.;Lee, S.Y.;Kim, O.R.;Lee, S.W.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.439-443
    • /
    • 2008
  • Painting process or coating with acrylic film may improve the surface defects of injection molded parts deteriorated by weldlines. flow marks. and etc. However such processes increase the production costs and increase environmental problems. Recently various types of rapid mold heating & cooling technology have been developed in order to improve surface quality of products. In this study. the heating & cooling performance of a telephone case mold is investigated by heat transfer analysis, in which the rapid mold heating & reeling technology is applied. The surface temperature of the mold was measured using thermal image camera and compared with analysis results. The influence of the rapid mold heating & cooling technology on weldline appearance and cycle time increase was also examined.

  • PDF

A numerical study on the residual stress in LED encapsulment silicone considering cure process (경화공정을 고려한 LED 패키징 실리콘의 잔류음력에 대한 수치해석적 고찰)

  • Song, M.J.;Kim, K.B.;Kang, J.J.;Kim, H.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.323-327
    • /
    • 2009
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for both curing and cooling process during silicone molding. For analysis of curing process, a cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the curing as well as the cooling process should be designed carefully so as to reduce the residual stress although the cooling process plays the bigger role than curing process in determining the final residual stress state.

  • PDF

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.496-500
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection (사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF

The Delivery Shortening Process of Engineering Service for the Flow Analysis of Plastics Injection Molding (사출성형 유동해석 서비스 납기단축을 위한 프로세스 개발)

  • Lee, Dong-Yoon;Song, Ki-Hyeong;Choi, Young-Jae;Lee, Seok-Woo;Choi, Hon-Zong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.614-619
    • /
    • 2007
  • The importance of simulation of plastic flow in the injection mold is increasing as the parts are more complex, but the small-scale enterprises can't afford to invest for the infra individually. CAE (Computer Aided Engineering) service was naturally born based on these needs. This paper presents the engineering collaboration model between the large and the small/medium enterprises in the field of injection molds. Based on the engineering collaboration hub and CAE service, small-scale enterprises could research the necessary technology and develop the proper products. The analysis results of CAE are provided by the integrated visualization system on the web. This paper also deals with the delivery shorting process of CAE service for electric/electronic parts which should meet the needs of customers as soon as possible.

  • PDF

Shoemoulds Runner Shape Optimization using MoldFlow (MoldFlow를 이용한 신발 사출금형 러너부 형상 최적화)

  • 류미라;서영백;문병주;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1483-1486
    • /
    • 2003
  • Injection mold is a manufacturing process used to produce the various parts of complicated shape at a low cost. Many factors such as, section shape, resin and mold temperature, filling time, etc, affect on the quality of injection part during injection molding process. The precent study, was carried out the shrinkage analysis of shoes injection mold to optimize runner shape based on filling and packing pressure with MoldFlow. Taguchi design and analysis of variance are used to optimize injection mold design.

  • PDF

State-of-the-art of the multi-scale analysis of advanced composite materials by homogenization method (일본내 연구동향 (6편중 제4편))

  • Takano, Naoki
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 2002
  • To study numerically the mechanical behaviors of advanced composite materials considering the microscopic phenomena as well as the macroscopic properties and behaviors, a multi-scale modeling and analysis by the mathematical homogenization method with the help of the finite element method(FEM) are reviewed. The hierarchical modeling strategy and the formulation are briefly described first to give some idea of the multi-scale framework. The latter half of this article focuses on the verification of the multi-scale analysis by the homogenization method in its applications to real advanced materials. The first example is the verification of the predicted macroscopic(homogenized) properties based on the microstructure of porous ceramics. In spite of the complexity of the random microstructure, the error between the predicted and the measured values was only 1%. Next, two applications to the process simulation of fiber reinforced polymer matrix composites are presented. The permeability characteristics are evaluated for sheared weave fabrics for resin transfer molding(RTM) simulation, and the thermoforming of FRTP sheet is analyzed considering the large deformation of the knit structure during the deep-draw forming was verified by comparison with the experimental results.

The Optimal Design of Vents using Linear Analysis (선형해석을 이용한 방열그릴(GRILLE)최적설계)

  • Choi, Yong-Hwan;Joe, Yeo-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.326-332
    • /
    • 2000
  • It should be essentially considered as important points that design of case in electronic product which simultaneously satisfied with structural stability and molding form in respect to developmental period and economical aspect. Especially, a shape of air vents grille, which is made to emit heat happen to be in the internal of product, must satisfy durability and strength but We have no quantitative data because to be done by experience of designer. So, in this study, We will propose that structure of optimal and method of design in air vents grille, which to reduce a lot of loss of time and cost due to trial and error of design and to stabilize in the BALLISTIC Impact test as to estimate strength with external appearance of product, using linear analysis.

  • PDF

Application of Statistical Analysis for Working Factors Effect of High Speed End-Milling for STD61 (열간금형용강의 고속 엔드밀 가공인자의 영향에 대한 통계적 분석의 적용)

  • Bae, Hyo-Jun;Lee, Sang-Jae;Woo, Kyu-Sung;Park, Heung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1148-1153
    • /
    • 2004
  • Recently the high speed end-milling processing is demanded the high-precise technique with good surface rougj1ness and rapid time in aircraft, automobile part and molding industry. The working factors of high speed end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to analyze the working factors to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on Spindle speed, feed rale, hardness and axial depth of cut By design of experiment, it is effectively represented shape characteristics of surface roughness in high speed end-milling And determination($R^2$) coefficient of regression equation had a satisfactory reliability of 89.7% and regression equation of surface roughness is made by regression analysis.

  • PDF

Solder Joint Reliability of Bottom-leaded Plastic Package (BLP 패키지의 솔더 조인트의 신뢰성 연구)

  • 박주혁
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF