• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.024 seconds

Applicator parts hub and cannula integrated mold technology and bonding strength analysis for retinal disease treatment (망막질환 치료를 위한 어플리케이터 허브와 캐뉼러 일체화 금형기술 및 접합강도 분석)

  • Jeong-Hyeon Yu;Yong-Dae Kim;Jeong-Won Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • Macular degeneration and glaucoma are representative age-related retinal diseases that rank second and third in the prevalence of retinal diseases, and are a kind of degenerative neurological disease. Irreversible visual acuity and visual field damage may occur, and the number of patients is rapidly increasing as the population ages. Since this retinal disease is a chronic disease, continuous drug treatment is required. There are various drug delivery methods for treatment, but direct injection of the drug into the intravitreal is the most effective for continuous delivery of the drug over a long period of time. In order to solidify Dexamethasone, a retinal disease treatment, and insert it into the primary intravitreal, it is important to develop a technology to miniaturize the treatment and an applicator to deliver the treatment. In this study, a mold technology was developed to integrate the cannula and hub, which are one part of applicator. In addition, surface treatment was performed on the outside of the cannula to improve the bonding strength between the cannula and the hub, and the bonding strength according to each condition was analyzed through a tensile test.

  • PDF

Characteristics of Complex Foaming Composites' Normal Pressure Foaming of Using Rubber and Bio-Degradable Materials

  • Dong Hun Han;Young Min Kim;Dan Bi Lee;Kyu Hwan Lee;Han-Seong Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.323-329
    • /
    • 2023
  • There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

Design of Data Fusion and Data Processing Model According to Industrial Types (산업유형별 데이터융합과 데이터처리 모델의 설계)

  • Jeong, Min-Seung;Jin, Seon-A;Cho, Woo-Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.67-76
    • /
    • 2017
  • In industrial site in various fields it will be generated in combination with large amounts of data have a correlation. It is able to collect a variety of data in types of industry process, but they are unable to integrate each other's association between each process. For the data of the existing industry, the set values of the molding condition table are input by the operator as an arbitrary value When a problem occurs in the work process. In this paper, design the fusion and analysis processing model of data collected for each industrial type, Prediction Case(Automobile Connect), a through for corporate earnings improvement and process manufacturing industries such as master data through standard molding condition table and the production history file comparison collected during the manufacturing process and reduced failure rate with a new molding condition table digitized by arbitrary value for worker, a new pattern analysis and reinterpreted for various malfunction factors and exceptions, increased productivity, process improvement, the cost savings. It can be designed in a variety of data analysis and model validation. In addition, to secure manufacturing process of objectivity, consistency and optimization by standard set values analyzed and verified and may be optimized to support the industry type, fits optimization(standard setting) techniques through various pattern types.

Optimum design of injection mold heater for uniform curing of LSR seal for waterproof connector (방수 커넥터용 LSR Seal의 균일 경화를 위한 사출 금형 히터의 최적 설계)

  • Song, Min-Jae;Cha, Baeg-Soon;Hong, Seok-Kwan;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.310-315
    • /
    • 2017
  • Automotive waterproof connectors are highly functional parts that must be air-tight in a complex environment. In the LSR multi-cavity injection molding process for manufacturing waterproof connectors, it is important to maintain a uniform curing temperature between the cavities in order to obtain a quality product. For this purpose, we designed the capacity of the cartridge heater differently for each position, and then linked the heat transfer analysis and optimization module to obtain the optimal cartridge heater capacity. As a result of the optimization analysis, the temperature deviation between cavities was decreased from $13.1^{\circ}C$ to $8.1^{\circ}C$ compared with the case in which constant heater capacity was applied, so that the design criterion could be satisfied within a temperature deviation of $10^{\circ}C$ for uniform curing. This study suggests that this method can be applied efficiently to the design of a large area multi-cavity LSR mold heater.

A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen (화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kwak, Jae-Seob;Kim, Jun-Min;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

A Study on Promotion Policy of Korean Design (I) (한국 디자인 진흥정책에 관한 연구(1))

  • 윤태호
    • Archives of design research
    • /
    • v.6 no.1
    • /
    • pp.11-22
    • /
    • 1993
  • The purpose of this study was to provide basic information for establishment of a desirable design promotion policy drive by research and analysis of recognition to design by consumers (including students) and designers and their level, merchandise evaluation evaluation and obstructing factors in revitalization of designs. To implement such purpose as referred to hereinabove, research was made by introduction of questionaires which were distributed to 500 persons of consumers group and 350 individuals of registered designers in Seoul, and for analysis of the data, density and percentage (%) were obtained by use of SAS Package and the dispersed analysis and correlationship were added for necessary parts. The result of study is summarized as follows; (l)The consumers remind the design as costume (21%) and molding (20%), and the designers remind it as creativity (27%) & molding (14%) respectively and the reminding of design by the two groups was indicated very simi lar. (p < 0.001) (2)As per the recogni tion of roles by the designers the research has highly indicated as contribution to improving living standards or development of economy & industry, and also indicated that it creates excessive consumption with sti$$\mu$ative manner. (3)The design reacts as an important parameter in selecting cri teria of merchandises and deciding factors for purchasing and also, in enhancement of competitive power of merchandise impact of design (2.36) was regarded very high. (4)The Korean-made home appliances in image is assessed as vulnerable than that of Japanese products, and the product designing level is also shown difference from advanced countries (1.36), but has indicated as somewhat better than those competitive nations (0.51) (5)The satisfaction to design policy of the Gov't is very low (1.69) and they recommended for new establishment of Policy undertaking department within the Gov't and indicated reasearch & development of design as the major issue. In regard to the above I'd like to emphasize the design industry $$\mu$t be dealt with the national level as a whole in order to promote thereof.

  • PDF

Analysis of the shrinkage and warpage of Wafer lens during UV curing (Lens 성형시 UV경화 반응에 따른 수축 및 변형 대한 해석적 접근)

  • Park, Sihwan;Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6464-6471
    • /
    • 2014
  • The UV curing method is a popular process for lens molding on a unit wafer. This process, however, has several drawbacks including wafer adhesion during the ejection process after curing, errors in lens shape and wafer warpage due to material shrinkage during the curing process, and lens centering errors on both sides of a wafer. Among these, the lens shape error and warpage are influenced directly by the UV curing process due to factors including the UV radiation uniformity, the degree of cure according to UV intensity, and the shrinkage characteristics of the material. Therefore, a theory is needed not only to understand the change in the material characteristics, such as the shrinkage rate due to the curing reaction, but also to establish a model. In addition, an analysis system is needed to realize the model. This study proposes a new analysis method for the wafer lens molding process by Comsol modeling. This method was verified by comparing the results with those of the actual process.