• 제목/요약/키워드: mold-filling

검색결과 346건 처리시간 0.026초

다수 개 빼기 성형에서 일반사출성형과 사출압축성형의 성형특성 비교 (Comparison of Molding Characteristics for Multi-cavity Molding in Conventional Injection Molding and Injection Compression Molding)

  • 이단비;남윤효;류민영
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.144-149
    • /
    • 2014
  • 일반사출성형은 공정 중 보압단계에서 캐비티에 높은 압력이 작용하여 성형품에 큰 잔류응력이 남게 된다. 또한 캐비티 내 위치 별로 압력분포가 달라 균일한 물성의 제품을 얻는데 한계가 있다. 다수 개 빼기 일반사출성형에서는 캐비티간 충전 불균형이 일어나 캐비티간 품질의 편차를 일으킨다. 이와 같은 한계를 극복하기 위해 사출압축성형 공정을 사용하는 경우가 많다. 본 연구에서는 다수 개 캐비티를 갖는 금형을 이용하여 일반사출성형과 사출압축성형을 비교 분석하였다. 실험과 해석을 통하여 연구를 수행하였으며 투명한 수지인 PC와 PS를 이용하여 시편에 나타나는 복굴절을 관찰하여 일반사출성형과 사출압축성형에서 나타나는 성형특성을 비교하였다. 연구결과, 사출 압축성형으로 제작된 시편에서 캐비티 내의 압력이 균일하여 복굴절과 성형수축률이 낮고 균일하게 나타났다. 그리고 일반사출성형에서 나타나는 캐비티간 충전 불균형에 의한 캐비티간 물성의 편차가 사출압축성형에서는 크게 줄어들었다. 본 연구를 통하여 사출압축성형은 다수 개 빼기 사출성형에서 캐비티 내 균일한 물성확보뿐만 아니라 캐비티간 품질 불균형을 해소하는데 유용함을 확인할 수 있었다.

고무사출성형의 적정설계 (Optimum Design of Rubber Injection Molding Process)

  • 이은주;임광희;부타이지양
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.47-55
    • /
    • 2011
  • K사의 고무 사출성형에 있어서 애로사항인 등속조인트 부트(boots)의 크 (crack) 발생 등의 문제점을 해결하기 위하여, 상용 CAE 프로그램인 MOLDFLOW(Ver. 5.2)를 이용한 전산모사를 수행하여 적정금형설계를 도출하고 적정작업조건을 구축하였다. 그 결과 크 의 발생 원인은 크 이 발생하는 위치에 형성되는 weld 및 meld line의 형성 때문이고, 또한 크 이 발생하는 위치에서의 가류(curing)가 불완전한 것이 확인되었다. 이와 같은 weld 및 meld line의 형성을 방지하기 위해서 게이트(gate)의 위치를 변경하고 최적위치에 설계함으로써, 유동선단(melt front)의 충돌 또는 수지흐름의 만남을 최소화하는 충전패턴(fill pattern)을 형성하고 부트 안쪽 하단의 크 발생을 방지하였다. Weld 및 meld line과 에어트랩(air trap) 불량이 가장 큰 게이트 위치는 각각 최적 게이트위치를 기준으로 서로 정반대 방향임이 관찰 되었다. 한편 몰드(mold)의 온도를 $170^{\circ}C$로 유지하게 함으로써 크 이 발생했던 위치에 가류조건을 만족시켰다.

박육 스테인리스 주강에 대한 유동 및 응고해석의 실험적 고찰 (Experimental Study of Flow and Solidification Simulation for Thin Wall Stainless Steel Castings)

  • 최학규;박홍일;정해용;배차헌;최병강
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.344-353
    • /
    • 2000
  • In order to find out the casting conditions of the thin wall stainless steel exhaust manifold for automobile, the melt flow and solidification behavior simulated by the Z-CAST program were evaluated, and experimental casting result on the test casting and exhaust manifold of SSC13 alloy were investigated. From the results of this study, it was shown that the calculated results on fluid flow were in good agreement with practical thin wall test castings under the same casting conditions, as pouring metal is austenitic stainless steel(SSC13) and pouring temperature is 1575, 1630, and $1665^{\circ}C$ respectively. That calculated result with designed thin wall exhaust manifold was predicted filling up into the mold cavity, and practical casting was sound. The solidification simulation was predicted shrinkages at the bosses for original exhaust manifold, and designed it without bosses was predicted no defect. Therefore practical exhaust manifold casting was sound and in good agreement with calculated solidification results.

  • PDF

사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계 (Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines)

  • 박창현;표병기;최동훈;구만서
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

가스사출성형인자가 가스사출성형품의 중공부 형성에 미치는 영향 (Effects of Processing Variables on the Gas Penetrated Part of Gas-Assisted Injection Molding)

  • 한성렬;박태원;정영득
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.144-150
    • /
    • 2005
  • Gas-assisted injection molding (GAIM) process is reducing the injection pressure during mold filling required as well as the shrinkage and warpage of the part and cycle time. Despite of these advantages, this process introduces new parameters and makes the application more difficult because the process interacts between gas and melt during injection molding process. Important GAIM factors that involved in this process include gas penetration design, locations of gas injection points, shot size, gas injection delay time as well as common injection molding parameters, gas pressure and gas injection time. In this study, the experiments were conducted to investigate effects of GAIM process variables on the gas penetration for PP and ABS moldings by changing gas injection point. Taguchi method was used fer the design of experiment. When the gas was injected at cavity's center, the most effective factor was shot size. When the gas was injected at cavity's end, the most effective factor was melt temperature. Injection speed was also an effective factor in GAIM process.

주조유동 시뮬레이션에서 자유경계면 추적 기법 비교 연구 (A Comparative Study of Interface Reconstruction Algorithms in The Molten Metal Flow)

  • 최영심;홍준호;황호영
    • 한국주조공학회지
    • /
    • 제31권3호
    • /
    • pp.124-129
    • /
    • 2011
  • We applied two numerical schemes to improve accuracy of the solution in the flow simulation of molten metal. One method is Piecewise Linear Interface Calculation (PLIC) method and the other is Donor-Acceptor (D-A) method. In the present work, we have tested simple problems to verify the module of the interface reconstruction algorithms. After validations, accuracy and efficiency of these two methods have compared by simulating various real products. On the numerical simulation of free surface flow, it is possible for PLIC method to track very accurately the interface between phases. PLIC method, however, has the weak point where a lot of computational time hangs, though it shows the more accurate interface reconstruction. Donor-Acceptor method has enough effectiveness in the macro observation of mold filling sequence though it shows the inferior accuracy.

수치해석에 의한 고압다이캐스팅용 금형설계 및 주조공정해석 (Analysis of the High Pressure Die Casting Process by Computer Simulation)

  • 이창호;최재권;남태운
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.400-406
    • /
    • 2000
  • Computer simulation for the predictions of casting defects is very important to produce high quality castings with less cost. Complicate shaped Al solenoid housing part was selected to be cold chamber die cast and a numerical simulation technique was applied for the optimization of the chill vent position and gating. A first design led to insufficient central flow. This flow left the last filled areas falling into the inner portion of the part. And last filled area did not fit the chill vent position. So these resulted in a high possibility of air entrapment in the casting and the design was not proper for the part. The design was improved by using a proper gating system, a more chill vent and proper overflow positions. New design provided a homogenous mold filling pattern and the last filled areas that being located at the overflow and chill vent. Casting plan which produce good quality solenoid housing part was established by using the computer simulation.

  • PDF

사출성형 공정에서 젯팅 현상에 관한 고찰 (A Study on the Jetting Phenomena in Injection Molding Process)

  • 류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

알루미늄 합금의 소실모형주조 중 기포 형성 기구에 관한 연구 (The Study on the Formation Mechanism of Gas Pore During Lost Foam Casting of Al alloys)

  • 신승렬;한상원;이경환;이진형
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.268-275
    • /
    • 2003
  • The mechanism of the hydrogen gas pore formation was investigated in Lost Foam Casting of Al-alloy by reduced pressure test and real casting. The hydrogen gas pick-up was affected by the formed gas during the decomposition of polystyrene in addition to the liquid product. It depended on pouring temperature and a proper temperature of metal front gave the minimum hydrogen pick-up. At a low pouring temperature, the hydrogen went into the melt mainly from entrapped liquid product of polystyrene but pores were formed from the gas as well as the liquid product at a high pouring temperature. The mold flask evacuation down to 710torr decreased the gas porosity down by around 0.4% vol%. The entrapped decomposition product of polystyrene in the melt was observed through the visualization of filling behavior of Al alloy-melt with the high speed camera.

W-Cu의 마이크로 금속분말사출성형 (Micro Metal Powder Injection Molding in the W-Cu System)

  • 김순욱;양주환;박순섭;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.