• Title/Summary/Keyword: mold-filling

Search Result 346, Processing Time 0.026 seconds

A technical study on mold construction development for junction improvement and productivity improvement of Double-Injection molding (이중사출의 접합성 개선 및 생산성향상을 위한 금형구조 개발기술연구)

  • Kim, O.R.;Lee, S.Y.;Kim, Y.K.;Woo, C.K.;Han, I.Y.
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.49-55
    • /
    • 2008
  • Double-injection molding can inject two different materials or two colors in the same mold and process. If this injection process use, product has ability because the base part maintain strength and specified part can inject soft-material. It makes the cost down by single operation automatically for saving wages. In this paper, we designed double-injection mold for automobile remote control to inject secondary using this part as insert after inject external appearance of product. CAE analysis was progressed gate location and runner size as variable and analysis result is reflected in mold design process. As a result, it could solved badness that is generated at the conventional mold. Additionally, cost is downed by reducing loss of runner as well as could omit painting process because surface of finished product is improved through new mold.

  • PDF

A study on the measurement of cavity pressure and computer simulation (성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding (다층 예비성형체에 대한 삼차원 충진해석)

  • Yang, Mei;Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

A Study on the Resin Flow through Fibrous Preforms in the Resin Transfer Molding Process (수지이동 성형공정에서 섬유직조망내의 수지유동에 관한 연구)

  • 김성우;이종훈;이미혜;남재도;이기준
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.70-81
    • /
    • 1999
  • Resin transfer molding(RTM) as a composite manufacturing process is currently of great interest in the aerospace industry requiring high performance composite parts. In this study, an analysis of mold filling in the RTM process was carried out by numerical simulation using finite element/control volume technique. Experimental work for the visualization of resin flow through fibrous preform was also conducted in order to quantitatively measure the permeabilities of the fiber mats and to evaluate the validity of the developed numerical code. The different types of fiber mats and silicon oils were selected as reinforcements and resin materials, respectively. The effects of fibrous preform structure, mold geometry, and preplaced insert on the flow front patterns during mold filling were examined by integrating the model predictions and experimental results. The flow fronts predicted by numerical simulation were in good agreement with those observed experimentally. However, according to the regions of the mold, some deviations between predicted and observed flow fronts could be found because of non-uniform fiber volume fraction. Weldline locations for the resin flow through round insert preplaced in the mold could be qualitatively deduced based on predicted flow fronts.

  • PDF

A COMPARISON OF THE ACCESSORY CANAL FILLING EFFECTS OF THE THREE ROOT CANAL FILLING METHODS WITH GUTTA-PERCHA (Gutta-percha를 이용(利用)한 세가지 근관충전법(根管充塡法)의 부근관충전(副根管充塡) 효과비교(效果比較))

  • An, Seong-Ho;Cho, Kyew-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.121-133
    • /
    • 1989
  • In order to compare the accessory canal filling effects of the three root canal filling methods with gutta-percha, the author fabricated artificial root canal mold with the first and second accessory canals of chrome-cobalt alloy. After the artificial root canal was filled with gutta-percha by lateral condensation, vertical condensation and low-temperature thermoplasticized gutta-percha injection-molded method, twenty five times respectively, the gutta-percha forced into the first and second accessory canals were measured with caliper for length. The results were as follows: 1. The filling in both accessory canals was most effective in low-temperature thermoplasticized gutta-percha injection-melded method followed in such order as: vertical condensation method and lateral condensation method (p < 0.01). 2. The filling effect of the second accessory canal was more or less higher than that of the first one (p < 0.05). 3. Low-temperature thermoplasticized gutta-percha injection-molded method was fastest in time needed for root canal filling followed by lateral condensation method and vertical condensation method.

  • PDF

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF