• Title/Summary/Keyword: mold material

Search Result 839, Processing Time 0.031 seconds

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.144-149
    • /
    • 2008
  • Configuration of filling imbalance which is originated from imbalanced share rate of melt on runner is changed by runner layout, runner shape, material property, injection pressure, injection speed, melt temperature and mold temperature. In this paper, we conducted a study of runner layout and shape that are main factors of filling imbalance. Other factors such as the sharp corner effect and the groove corner effect are recently released were also considered. The results of study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Especially, this study suggests a new runner system for filling balance by adapting the two effects of unary branch type runner at multi cavity mold and theoretical investigated flow in the sharp corner type runner.

A Study on Digital Process of Injection Mold in Reverse Engineering (역공학을 이용한 사출금형제작 공정에 관한 연구)

  • Lee, Hui-Gwan;Kim, Hyeong-Chan;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.160-165
    • /
    • 2002
  • A study on digital processes of injection mold in reverse engineering are presented. Reverse engineering is useful fur several cases, where user has no geometry information of object. Laser scanner is used to obtaining 3D coordinates of object. Sequences to process cloud data are described; sampling to reduce number of points, sorting to adjust the point order, and fitting to curve and surface, and so on. Split slide structure of mold is used fur undercut part and high viscosity material. Flow of injection molding are analysed to correct cooling channel and simulate molding conditions. NC tool paths are generated to carve core and cavity. The processes are performed in digital data for reduction of lead time and consecutive geometry data.

The Basic Study on the Casting/Forging Technology of Aluminum Alloy (알루미늄 합금의 주조/단조 기술에 대한 기초연구)

  • 배원병;김영호;이영석;김맹수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.62-67
    • /
    • 1998
  • An experimental study has been carried out to investigate casting process parameters which influence on the microstructures of cast preforms in casting/forging process of aluminum alloy. In the casting process, pouring temperature, pouring time, mold temperature, mold material, and, cooling method are selected as process parameters. With the cast preform, a forging test has been performed to compare mechanical properties of final products between casting/forging process and forging process. From the experimental results, low mold temperature and water cooling method are favorable for obtaining minute microstructures of cast preforms. Casting defects included in cast preforms. such as pores and shrinkage cavity, are eliminated by the forging process. And comparing cast/forged products with conventionally forged products, the former are almost as same as the latter in mechanical characteristics.

  • PDF

A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials (연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구)

  • 홍성민;이동주;제태진;최두선;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

High Brightness Prism Light-guide Plate for TFT-LCDs Using Optical Simulation and Novel Injection Mold Process (광학시뮬레이션과 새로운 사출성형법을 사용한 TFT-LCD용 고휘도 프리즘 도광판)

  • Han, Jeong-Min;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • We have designed high performance prism light-guide plate (LGP) in 17 inch TFT-LCD. In test result to embody high brightness BLU in case of LGP of base and upper surface with 17 inch, thickness 8mm adding prism construct. Using optical simulation, we forecast the brightness and uniformity in LGP with prism structure. And we adopted novel injection mold method and Nickel stamper to make actual evolution sample. Novel injection mold process has steady heating time zone in heat cycle time of injection mold process. For this novel heat cycle control, we achieved above 90[%] height prism structure as our design. It is superior brightness improvement than previous that of printing form about some 20[%] and in this course to embody actual material it succeeded prism LGP production by 17 inch injection form process.

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy (과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰)

  • Park, Jeong-Wook;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

A Study on Fabrication of Inner Structure Plate for Large-area Using Micro Patterned Press Mold (미세패턴 프레스 금형을 이용한 대면적 내부구조재 제작에 관한 연구)

  • Kim, H.J.;Je, T.J.;Choi, D.S.;Kim, B.H.;Huh, B.W.;Seong, D.Y.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.40-44
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Accordingly, the usage of sandwich structure is very widely applied to the aircraft, the automobile and marine industry, etc., because of these advantages. In this paper, we have investigated the buckling protection of an inner structure plate and the useful corrugated configuration for contact, and the fabrication method of the inner structure plate for large area using the continuous molding process. Also, we have guaranteed the accuracy of the molding process through the micro corrugated mold fabrication and secured the accuracy and analyzed aspect properties of the inner structure plate fabricated for a large area using the partial mold process.

  • PDF

Study on the Shear Key-shaped Mold making Method utilizing 3D Printers (3D 프린터를 활용한 전단키 형상 몰드 제작 방법에 관한 연구)

  • Jang, Jong-Min;Jang, Hyeon-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.5-6
    • /
    • 2016
  • Due to the construction of high-rise and long axis etc, UHPC(Ultra High Performance Concrete) has attracted attention as a material that will replace the existing concrete. In order to improve the structural performance of each member joints, after demolding the concrete, method for surface treatment of the contact surface or by modifying the mold to create a shear key will be applied. In this study, to improve the conventional shear key manufacturing process, utilizing a 3d printer to produce a shear key plate. 3D printers have advantage it is inexpensively manufactured as compared with other production methods. Therefore, this study utilizes a 3D printer, we propose the shear key-shaped mold and plate shear key production measures.

  • PDF

Setup Data Generation for Positional 5-axis Machining of Die and Mold (금형의 고정형 5축 가공 시 공구자세 셋업 정보 산출시스템 개발)

  • Lee, Jung-Geun;Yang, Seong-Jin;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.382-390
    • /
    • 2008
  • Five-axis machining has been applied to manufacture of turbine blades, impellers, marine propellers. Nowadays it extends to mold & die machining, where more productivity as well as added value is expected. The five-axis machining can be divided into positional and continuous, according to the variableness of tool orientation during material removal process. The positional five-axis machining is commonly applied to the regional machining on a whole part surface in mold manufacturing industry, where the tool orientation for each region (area) should be determined to be feasible, that is, avoiding any interference such as machine tool collision, etc. Therefore it is required for a CAM programmer to decide a feasible tool orientation in generating tool-paths on a designated area, because it is a very tedious job to obtain such information by utilizing a commercial CAM system. The developed system generates feasibility data on tool orientation and machining region, which facilitates the CAM programmer's decision on a feasible tool orientation.