최근 기후변화로 야기되는 식생의 변화는 수문기상인자인 증발산과 토양수분에 많은 영향을 끼친다. 본 연구의 목적은 식생의 변화가 수문기상인자인 토양수분에 어떠한 영향을 미치는지 분석하고자 하는데 있다. 식생인자와 수문기상 인자와의 상관관계를 알아보기 위해 Moderate Resolution Imaging Spectroradiometer(MODIS) 위성 이미지 데이터를 연구에 적용하였으며, 식생인자는 MODIS 13 Vegetation Indices Product에서 추출한 정규식생지수 Normalized Difference Vegetation Index(NDVI)를 이용하였다. 식생인자와 토양수분의 상관관계를 분석하기 위해 농업기상정보시스템(Rural Development Administration, RDA)에서 측정한 군위, 논산, 옥천, 예산 지역의 토양수분 관측값 및 Aqua 위성에 탑재된 Advanced Microwave Scanning Radiometer E(AMSR-E)를 이용하여 측정한 토양수분 관측값을 MODIS-NDVI와 비교 분석하였다. 식생인자와 수문기상인자의 시계열 자료를 이용하여 변화하는 양상을 알아내고자 하였고 상관성을 분석하여 식생인자가 수문인자에 어떠한 영향을 주는지 파악하였다. 그 결과 RDA 토양수분 관측값은 MODIS-NDVI와 거의 비슷한 경향을 나타남을 확인 할 수 있었으며, 이는 RDA와 AMSR-E의 토양수분의 관측 깊이에 따른 차이로 이 같은 현상이 나타난다고 사료된다, 또한 MODIS-NDVI, AMSR-E, RDA가 가지고 있는 각기 다른 공간 해상도(1km, 25km, point scale)가 반영된 결과라 할 수 있겠다, 추후 이를 보완한다면 보다 식생변화가 토양수분에 미치는 영향분석을 명확히 할 수 있을 것이다.
The drought index has been developed, based on a $8.6{\mu}m$ surface emissivity in the $8-12{\mu}m$ MODIS channels over the African Sahel region (10-20 N, 13 W-35 W) and the Seoul Metropolitan Area (SMA: 37.2-37.7 N, 126.6-127.2 E). The emissivity indicates the $SiO_2$ strength and can vary interannually by vegetation, water vapor, and soil moisture, as a potential indicator of drought conditions. In a well-vegetated region close to 10 N of the Sahel, the Normalized Difference Vegetation Index (NDVI) showed high sensitivity, while the emissivity did not. On the other hand, the NDVI experienced negligible variability in a poorly vegetated region near 20 N, while the emissivity reflected sensitively the effects of atmospheric water vapor and soil moisture conditions. Seasonal variations of the emissivity (0.94-0.97) have been examined over the SMA during the 2003-2004 period compared to NDVI (or Enhanced Vegetation Index; EVI). Here, the dryness was more severe in urban area with less vegetation than in suburban area; the two areas corresponded to the north and south of the Han river, respectively. The emissivity exhibiting a significant spatial correlation of ${\sim}0.8$ with the two indices can supplement their information.
Nam, Won Ho;Hong, Eun Mi;Jang, Min Won;Choi, Jin Yong
Journal of The Korean Society of Agricultural Engineers
/
v.56
no.5
/
pp.77-87
/
2014
The impacts of climate change on upland crops is great significance for water resource planning, estimating crop water demand and irrigation scheduling. The objective of this study is to predict upland crop evapotranspiration, effective rainfall and net irrigation requirement for upland under climate change, and changes in the temporal trends in South Korea. The changes in consumptive use and net irrigation requirement in the six upland crops, such as Soybeans, Maize, Potatoes, Red Peppers, Chinese Cabbage (spring and fall) were determined based on the soil moisture model using historical meteorological data and climate change data from the representative concentration pathway (RCP) scenarios. The results of this study showed that the average annual upland crop evapotranspiration and net irrigation requirement during the growing period for upland crops would increase persistently in the future, and were projected to increase more in RCP 8.5 than those in RCP 4.5 scenario, while effective rainfall decreased. This study is significant, as it provides baseline information on future plan of water resources management for upland crops related to climate variability and change.
Purpose: Yield monitoring systems are an essential component of precision agriculture. They indicate the spatial variability of crop yield in fields, and have become an important factor in modern harvesters. The objective of this paper was to review research trends related to yield monitoring sensors for grain crops. Methods: The literature was reviewed for research on the major sensing components of grain yield monitoring systems. These major components included grain flow sensors, moisture content sensors, and cutting width sensors. Sensors were classified by sensing principle and type, and their performance was also reviewed. Results: The main targeted harvesting grain crops were rice, wheat, corn, barley, and grain sorghum. Grain flow sensors were classified into mass flow and volume flow methods. Mass flow sensors were mounted primarily at the clean grain elevator head or under the grain tank, and volume flow sensors were mounted at the head or in the middle of the elevator. Mass flow methods used weighing, force impact, and radiometric approaches, some of which resulted in measurement error levels lower than 5% ($R^2=0.99$). Volume flow methods included paddle wheel type and optical type, and in the best cases produced error levels lower than 3%. Grain moisture content sensing was in many cases achieved using capacitive modules. In some cases, errors were lower than 1%. Cutting width was measured by ultrasonic distance sensors mounted at both sides of the header dividers, and the errors were in some cases lower than 5%. Conclusions: The design and fabrication of an integrated yield monitoring system for a target crop would be affected by the selection of a sensing approach, as well as the layout and mounting of the sensors. For accurate estimation of yield, signal processing and correction measures should be also implemented.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.125-125
/
2020
European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.329-329
/
2022
Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.
The major purpose of this study is to construct an in-situ soil moisture verification network employing Frequency Domain Reflectometry (FDR) sensors for Cosmic-ray soil moisture observation system operation as well as long-term field-scale soil moisture monitoring. The test bed of Cosmic-ray and FDR verification network system was established at the Sulma Catchment, in connection with the existing instrumentations for integrated data provision of various hydrologic variables. This test bed includes one Cosmic-ray Neutron Probe (CRNP) and ten FDR stations with four different measurement depths (10 cm, 20 cm, 30 cm, and 40 cm) at each station, and has been operating since July 2018. Furthermore, to assess the reliability of the in-situ verification network, the volumetric water content data measured by FDR sensors were compared to those calculated through the core sampling method. The evaluation results of FDR sensors- measured soil moisture against sampling method during the study period indicated a reasonable agreement, with average values of $bias=-0.03m^3/m^3$ and RMSE $0.03m^3/m^3$, revealing that this FDR network is adequate to provide long-term reliable field-scale soil moisture monitoring at Sulmacheon basin. In addition, soil moisture time series observed at all FDR stations during the study period generally respond well to the rainfall events; and at some locations, the characteristics of rainfall water intercepted by canopy were also identified. The Temporal Stability Analysis (TSA) was performed for all FDR stations located within the CRNP footprint at each measurement depth to determine the representative locations for field-average soil moisture at different soil profiles of the verification network. The TSA results showed that superior performances were obtained at FDR 5 for 10 cm depth, FDR 8 for 20 cm depth, FDR2 for 30 cm depth, and FDR1 for 40 cm depth, respectively; demonstrating that those aforementioned stations can be regarded as temporal stable locations to represent field mean soil moisture measurements at their corresponding measurement depths. Although the limit on study duration has been presented, the analysis results of this study can provide useful knowledge on soil moisture variability and stability at the test bed, as well as supporting the utilization of the Cosmic-ray observation system for long-term field-scale soil moisture monitoring.
Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.
With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.674-677
/
2006
토양수분은 토양입자나 공극에 포함되어 있는 물을 의미하는 것으로서 여러 수문현상을 연계하는 주요변수이며, 올바른 물순환 체계를 이해하기 위해서는 토양수분에 대한 활발한 관측과 연구가 수반되어야 한다. 하지만, 우리나라의 토양수분 자료는 지상관측 자료로서 관측기간이 짧고 결측치가 많아 장기 추세나 공간변화도를 분석하기엔 미흡할 뿐만 아니라 2차원 토양수분 자료는 보유하고 있지 않은 실정이다. 따라서, 본 연구에서는 이를 보완하기 위해 우리나라와 위도가 비슷한 지역인 미국 Illinois 지역의 토양수분자료와 정규식생지수의 상관관계를 이용하여 우리나라의 2차원 토양수분을 산출하였으며, 산출된 장기 토양수분 자료를 이용한 시 공간 변화도 분석을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.