• 제목/요약/키워드: moisture variability

검색결과 104건 처리시간 0.03초

Sampling Study on Environmental Observations: Precipitation, Soil Moisture and Land Cover Information

  • 유철상
    • 한국환경과학회지
    • /
    • 제5권2호
    • /
    • pp.103-112
    • /
    • 1996
  • Observational date is integral in our understanding of present climate, its natural variability and any cnange roue to anturopogenic effects. This study incorporates a brief overview of sampling requirements using data from the first ISLSCP Field Experiment (FIFE) in 1987, which was a multi-disciplinary field experiment over a 15km grid in Konza Prairie, USA. Sampling strategies were designed for precipitation and soil moisture measurements and also detecting land cover type. It was concludes that up to 8 raingages would be needed for valuable precipitation measurements covering the whole FIFE catchment, but only one soil moisture station. Results show that as new gages or station are added to the catchment then the sampling error is reduced, but the Improvement in error performance is less as the number of gages or stations increases. Sampling from remoteiy sensed instruments shows different results. It can be seen that the sampling error at 1arger resolution sizes are small due to competing error contribution from both commission and omission error.

  • PDF

SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발 (Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints)

  • 신용철;이태화;김상우;이현우;최경숙;김종건;이기하
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

잣나무 수간내 재질변동에 관한 연구(I) -심재와 변재의 생재함수율과 수축율 차이- (Studies on Variability in Wood Properties in Tree Stems of Pinus koraiensis (I) -Differences in Green Moisture Content and Shrinkage between Heartwood and Sapwood-)

  • 김병노
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권1호
    • /
    • pp.28-34
    • /
    • 1995
  • Korean pine(Pinus koraiensis S. et Z.) is an economically important species in Korea because it will be harvested largely within next 20~30 years. The purpose of this study was to investigate changes in green moisture content, specific gravity and shrinkage in the stems of a Korean pine trees to provide fundamental information for technical processes. The followings are the results of this study. 1. There were about 110% differences in the heartwood and sapwood' green moisture contents (heartwood=59.5%; sapwood=170.6%). 2. There were no significant differences in average volumetric shrinkage between heratwood and sapwood, even though there were significant differences in moisture contents between them. Therefore, moisture content did not significantly influence on the shrinkage. 3. There was no significant relationship between height and shrinkage in heartwood. However, in the sapwood, shrinkage was highly correlated with the height. 4. Shrinkage levels were the most significant in south-bound direction and least significant in north-bound direction in both heartwood and sapwood. 5. There was a positive correlation between specific gravity and shrinkage in the sapwood. However, no such a relationship was found in the heartwood.

  • PDF

신경망기법과 보조 자료를 사용한 원격측정 토양수분자료의 Downscaling기법 개발 (Development a Downscaling Method of Remotely-Sensed Soil Moisture Data Using Neural Networks and Ancillary Data)

  • 김광섭;이을래
    • 한국수자원학회논문집
    • /
    • 제37권1호
    • /
    • pp.21-29
    • /
    • 2004
  • 국내에서 예상되는 물부족 현상을 극복하기 위해서는 수문 현상의 이해를 통한 수자원의 안정된 확보, 관리, 개발 등 수자원 관련 기술격의 발전이 필수적이라 하겠다. 물순환계통의 올바른 이해와 적합한 모형의 개발 및 검증을 위해서는 강우 및 토양수분의 대규모 원격측정이 필수적일 뿐 아니라 관측 격자 내에서 일어나는 변화도에 대한 이해가 필요하다. 가까운 장래에 예상되는 전구 관측 토양수분자료의 격자크기인 10km는 중ㆍ소규모 지역의 수문ㆍ기상모델 적용에 한계를 가진다. 목적에 따라 각 모델들이 필요로 하는 입력 자료의 격자크기가 다른 반면 각 모델에 대한 적합한 크기의 격자를 가진 다양한 입력 자료의 부재는 토양수분자료에 대한 적합한 downscaling 기법을 필요로 한다. 사용 가능한 보조 자료와 토양수분의 선형상관관계는 상당히 낮으므로 이들 상호관계를 선형관계의 합으로 나타내는데 한계를 가진다. 그러므로 본 연구에서는 physically-based 분리기법과 자료들 간의 비선형 상관관계를 나타내는데 적합한 신경망 기법을 이용한 downscaling 기법을 개발하였다. 개발된 downscaling 기법은 Washita'92 실험으로부터 획득된 토양수분 및 보조 자료를 사용하여 4km자료를 0.2km자료로 downscaling 하였으며 출력자료는 기존의 전형적 기법에 의하여 smoothing된 자료보다 개선된 결과를 보여주었다.

기후학적 물수지에 의한 금강유역의 습윤/건조 상태 분석 (Analysis of Wetness/Dryness in Geum River Basin based on Climatic Water Balance)

  • 김주철;이상진
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.243-251
    • /
    • 2010
  • Evapotranspiration and rainfall-runoff are the major components of hydrological cycle and thereby the changes of them can directly affect the wetness/dryness or runoff characteristics of basins. In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.

Single-Kernel Corn Analysis by Hyperspectral Imaging

  • Cogdill, R.P.;Hurburgh Jr., C.R.;Jensen, T.C.;Jones, R.W.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1521-1521
    • /
    • 2001
  • The objective of the research being presented was to construct and calibrate a spectrometer for the analysis of single kernels of corn. In light of the difficulties associated with capturing the spatial variability in composition of corn kernels by single-beam spectrometry, a hyperspectral imaging spectrometer was constructed with the intention that it would be used to analyze single kernels of corn for the prediction of moisture and oil content. The spectrometer operated in the range of 750- 1090 nanometers. After evaluating four methods of standardizing the output from the spectrometer, calibrations were made to predict whole-kernel moisture and oil content from the hyperspectral image data. A genetic algorithm was employed to reduce the number of wavelengths imaged and to optimize the calibrations. The final standard errors of prediction during cross-validation (SEPCV) were 1.22% and 1.25% for moisture and oil content, respectively. It was determined, by analysis of variance, that the accuracy and precision of single-kernel corn analysis by hyperspectral imaging is superior to the single kernel reference chemistry method (as tested).

  • PDF

금강유역의 습윤/건조 상태에 대한 경향성 분석 (Trend Analysis of Wetness/Dryness in Geum River Basin)

  • 김주철;이상진;황만하;안정민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1640-1644
    • /
    • 2010
  • In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.

  • PDF

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Linking Leaf Functional Traits with Plant Resource Utilization Strategy in an Evergreen Scrub Species Rhododendron caucasicum Pall. along Longitudinal Gradient in Georgia (The South Caucasus)

  • Ekhvaia, Jana;Bakhia, Arsena;Asanidze, Zezva;Beltadze, Tornike;Abdaladze, Otar
    • Journal of Forest and Environmental Science
    • /
    • 제38권2호
    • /
    • pp.110-121
    • /
    • 2022
  • Leaf functional traits widely have been used to understand the environmental controls of resource utilization strategy of plants along the environmental gradients. By using key leaf functional traits, we quantified the relationships between leaf traits and local climate throughout the distributional range of Rhododendron caucasicum Pall. in eastern and western Georgian mountains (the South Caucasus). Our results revealed, that all traits showed high levels of intraspecific variability across study locations and confirmed a strong phenotypic differentiation of leaf functional variation along the east-west longitudinal gradient in response to the local climate; out of the explored climatic variables, the moisture factors related to precipitation and number of precipitation and dry days for winter and growth seasons were more strongly related to leaf trait variation than the elevation and air temperature. Among studied leaf traits, the leaf specific area (SLA) showed the highest level of variability indicating the different resource utilization strategies of eastern and western-central Rh. caucasicum individuals. High SLA leaves for western-central Caucasian individuals work in relatively resource-rich environments (more humid in terms of precipitation amount and the number of precipitation days in winter) and could be explained by preferential allocation to photosynthesis and growth, while eastern Caucasian samples work in resource-poor environments (less humid in terms of precipitation amount and the number of precipitation days in winter) and the retention of captured resources is a higher priority appearing in a low SLA leaves. However, more evidence from a broader study of the species throughout its distribution range by including additional environmental factors and molecular markers are needed for firmer conclusions of intraspecific variability of Rh. caucasicum.

IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석 (Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model)

  • 신용철
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.