Browse > Article
http://dx.doi.org/10.7747/JFES.2022.38.2.110

Linking Leaf Functional Traits with Plant Resource Utilization Strategy in an Evergreen Scrub Species Rhododendron caucasicum Pall. along Longitudinal Gradient in Georgia (The South Caucasus)  

Ekhvaia, Jana (Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and Medicine, Ilia State University)
Bakhia, Arsena (Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and Medicine, Ilia State University)
Asanidze, Zezva (Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and Medicine, Ilia State University)
Beltadze, Tornike (Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and Medicine, Ilia State University)
Abdaladze, Otar (Alpine Ecosystems Research Program, Institute of Ecology, School of Life Sciences and Medicine, Ilia State University)
Publication Information
Journal of Forest and Environmental Science / v.38, no.2, 2022 , pp. 110-121 More about this Journal
Abstract
Leaf functional traits widely have been used to understand the environmental controls of resource utilization strategy of plants along the environmental gradients. By using key leaf functional traits, we quantified the relationships between leaf traits and local climate throughout the distributional range of Rhododendron caucasicum Pall. in eastern and western Georgian mountains (the South Caucasus). Our results revealed, that all traits showed high levels of intraspecific variability across study locations and confirmed a strong phenotypic differentiation of leaf functional variation along the east-west longitudinal gradient in response to the local climate; out of the explored climatic variables, the moisture factors related to precipitation and number of precipitation and dry days for winter and growth seasons were more strongly related to leaf trait variation than the elevation and air temperature. Among studied leaf traits, the leaf specific area (SLA) showed the highest level of variability indicating the different resource utilization strategies of eastern and western-central Rh. caucasicum individuals. High SLA leaves for western-central Caucasian individuals work in relatively resource-rich environments (more humid in terms of precipitation amount and the number of precipitation days in winter) and could be explained by preferential allocation to photosynthesis and growth, while eastern Caucasian samples work in resource-poor environments (less humid in terms of precipitation amount and the number of precipitation days in winter) and the retention of captured resources is a higher priority appearing in a low SLA leaves. However, more evidence from a broader study of the species throughout its distribution range by including additional environmental factors and molecular markers are needed for firmer conclusions of intraspecific variability of Rh. caucasicum.
Keywords
Rhododendron caucasicum; the South Caucasus; intraspecific leaf trait variation; leaf specific area (SLA); climate growth response; longitudinal moisture gradient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends Ecol Evol 21: 178-185.   DOI
2 Melo JCF, Boeger MRT. 2016. Leaf traits and plastic potential of plant species in a light-edaphic gradient from Restinga in southern Brazil. Acta Biol Colomb 21: 51-62.
3 Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O'Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105-108.   DOI
4 Akhalkatsi M, Abdaladze O, Nakhutsrishvili G, Smith WK. 2006. Facilitation of Seedling Microsites by Rhododendron caucasicum Extends the Betula litwinowii Alpine Treeline, Caucasus Mountains, Republic of Georgia. Arct Antarct Alp Res 38: 481-488.   DOI
5 Pellizzari E, Pividori M, Carrer M. 2014. Winter precipitation effect in a mid-latitude temperature-limited environment: the case of common juniper at high elevation in the Alps. Environ Res Lett 9: 104021.   DOI
6 Ketskhoveli N. 1959. [Georgian Plant Cover]. Metsniereba, Tbilisi (in Georgian).
7 Tonin R, Gerdol R, Wellstein C. 2020. Intraspecific functional differences of subalpine plant species growing in low-altitude microrefugia and high-altitude habitats. Plant Ecol 221: 155-166.   DOI
8 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant Ecological Strategies: Some Leading Dimensions of Variation between Species. Annu Rev Ecol Syst 33: 125-159.   DOI
9 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.   DOI
10 Abdaladze O, Nakhutsrishvili G, Batsatsashvili K, Gigauri K, Jolokhava T, Mikeladze G. 2015. Sensitive Alpine Plant Communities to the Global Environmental Changes (Kazbegi Region, the Central Great Caucasus). Am J Environ Prot 4: 93-100.   DOI
11 Murtazaliev R, Anatov D, Ekhvaia J, Guseinova Z, Batsatsashvili K. 2020. Intraspecific variability of some functional traits of Trigonocaryum involucratum (Steven) Medw., a Caucasus endemic plant. Bot Serbica 44: 129-136.   DOI
12 Bartlett MS. 1936. The Square Root Transformation in Analysis of Variance. Suppl J R Stat Soc 3: 68-78.   DOI
13 Baruch Z, Christmas MJ, Breed MF, Guerin GR, Caddy-Retalic S, McDonald J, Jardine DI, Leitch E, Gellie N, Hill K, McCallum K, Lowe AJ. 2017. Leaf trait associations with environmental variation in the wide-ranging shrub Dodonaea viscosa subsp. angustissima (Sapindaceae). Austral Ecol 42: 553-561.   DOI
14 Ekhvaia J, Simeone MC, Silakadze N, Abdaladze O. 2018. Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp. iberica) and related Caucasian oak species in Georgia (South Caucasus). Tree Genet Genomes 14: 17.   DOI
15 Meng H, Wei X, Franklin SB, Wu H, Jiang M. 2017. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biol (Stuttg) 19: 552-561.   DOI
16 Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline? Science 341: 504-508.   DOI
17 Nakhutsrishvili G, Abdaladze O, Akhalkatsi M. 2006. Biotope types of the treeline of the Central Greater Caucasus. In: Nature Conservation (Gafta D, Akeroyd J, eds). Springer, New York, pp 211-225.
18 Nakhutsrishvili G, Abdaladze O. 2017. Vegetation of the Central Great Caucasus along W-E and N-S transects. In: Plant Diversity in the Central Great Caucasus: A Quantitative Assessment. Geobotany Studies (Nakhutsrishvili G, Abdaladze O, Batsatsashvili K, Spehn E, Korner C, eds). Springer, Cham, pp 11-16.
19 Nakhutsrishvili G, Zazanashvili N, Batsatsashvili K, Montalvo Mancheno CS. 2015. Colchic and Hyrcanian forests of the Caucasus: similarities, differences and conservation status. Flora Mediterr 25(Special Issue): 185-192.
20 Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61: 167-234.   DOI
21 Pfennigwerth AA, Bailey JK, Schweitzer JA. 2017. Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB Plants 9: plx027.
22 Uribe-Salas D, Saenz-Romero C, Gonzalez-Rodriguez A, Tellez-Valdez O, Oyama K. 2008. Foliar morphological variation in the white oak Quercus rugosa Nee (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. For Ecol Manag 256: 2121-2126.   DOI
23 Rodriguez-Gomez F, Oyama K, Ochoa-Orozco M, Mendoza-Cuenca L, Gaytan-Legaria R, Gonzalez-Rodriguez A. 2018. Phylogeography and climate-associated morphological variation in the endemic white oak Quercus deserticola (Fagaceae) along the Trans-Mexican Volcanic Belt. Botany 96: 121-133.   DOI
24 Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: 529.   DOI
25 Souza ML, Duarte AA, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. 2018. Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLoS One 13: e0208512.   DOI
26 Villar R, Maranon T, Quero JL, Panadero P, Arenas F, Lambers H. 2005. Variation in relative growth rate of 20 Aegilops species (Poaceae) in the field: The importance of net assimilation rate or specific leaf area depends on the time scale. Plant Soil 272: 11-27.   DOI
27 Wellstein C, Chelli S, Campetella G, Bartha S, Galie M, Spada F, Canullo R. 2013. Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodivers Conserv 22: 2353-2374.   DOI
28 Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Diaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets u, Reich PB, Sack L, Villar R, Wang H, Wilf P. 2017. Global climatic drivers of leaf size. Science 357: 917-921.   DOI
29 Yang J, Zhang G, Ci X, Swenson NG, Cao M, Sha L, Li J, Baskin CC, Slik JF, Lin L. 2014. Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Funct Ecol 28: 520-529.   DOI
30 Zhang X, He X, Gao J, Wang L. 2019. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems. Glob Ecol Conserv 17: e00527.   DOI
31 Karami L, Ghaderi N, Javadi T. 2017. Morphological and physiological responses of grapevine (Vitis vinifera L.) to drought stress and dust pollution. Folia Hortic 29: 231-240.   DOI
32 Pratt JD, Mooney KA. 2013. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob Chang Biol 19: 2454-2466.   DOI
33 Pyakurel A, Wang JR. 2013. Leaf morphological variation among paper birch (Betula papyrifera Marsh.) genotypes across Canada. Open J Ecol 3: 284-295.   DOI
34 Poorter H, Niinemets u, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182: 565-588.   DOI
35 Jackson DA. 1993. Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches. Ecology 74: 2204-2214.   DOI
36 Hoff C, Rambal S. 2003. An examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Ann For Sci 60: 153-161.   DOI
37 Ketskhoveli N, Kharadze A, Gagnidze R. 1971-2011. [Flora of Georgia (Sakartvelos Flora). 16 Vols]. Metsniereba, Tbilisi (in Georgian).
38 James FC, McCulloch CE. 1990. Multivariate Analysis in Ecology and Systematics: Panacea or Pandora's Box? Annu Rev Ecol Syst 21: 129-166.   DOI
39 Aliyeva GN, Mammadova ZA, Ojaghi JM, Pourbabaei H. 2020. Inter- and intrapopulation variations in leaf morphological and functional traits of Quercus petraea ssp. iberica under ecological factors in Azerbaijan. Plant Fungal Res 3: 61-68.   DOI
40 Dolukhanov AG. 1978. The Timberline and the Subalpine Belt in the Caucasus Mountains, USSR. Arct Alp Res 10: 409-422.   DOI
41 Gonzalez-Rodriguez A, Oyama K. 2005. Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Bot J Linn Soc 147: 427-435.   DOI
42 Eriksson L, Johansson E, Kettapeh-Wold S, Wold S. 1999. Introduction to Multi and Megavariate Data Analysis Using Projection Methods (PCA & PLS). Umetrics, Umea.
43 Fajardo A, Piper FI. 2011. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol 189: 259-271.   DOI
44 Garcia RA, Cabeza M, Rahbek C, Araujo MB. 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344: 1247579.   DOI
45 Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4: 1-9.
46 Gigauri K, Akhalkatsi M, Nakhutsrishvili G, Abdaladze O. 2013. Monitoring of vascular plant diversity in a changing climate in the alpine zone of the Central Greater Caucasus. Turk J Bot 37: 1104-1114.   DOI
47 Matesanz S, Valladares F. 2014. Ecological and evolutionary responses of Mediterranean plants to global change. Environ Exp Bot 103: 53-67.   DOI
48 Korner C. 2021. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 3rd ed. Springer International Publishing, Cham.
49 Liu M, Wang Z, Li S, Lu X, Wang X, Han X. 2017. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Sci Rep 7: 10780.   DOI
50 Madani N, Kimball JS, Ballantyne AP, Affleck DLR, van Bodegom PM, Reich PB, Kattge J, Sala A, Nazeri M, Jones MO, Zhao M, Running SW. 2018. Future global productivity will be affected by plant trait response to climate. Sci Rep 8: 2870.   DOI