• Title/Summary/Keyword: moisture flux

Search Result 117, Processing Time 0.023 seconds

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Germination Characteristics of Medicinal Crop Adenophora triphylla var. japonica Hara as Affected by Seed Disinfection and Light Quality (종자 소독처리와 광질에 따른 약용작물 잔대 종자의 발아특성)

  • Lee, Hye Ri;Kim, Hyeon Min;Jeong, Hyeon Woo;Oh, Myung Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.404-410
    • /
    • 2019
  • This study was performed to investigate the seed morphological characteristics and dormancy type of Adenophora triphylla var. japonica Hara that high valued medicinal crop and to select the disinfectants and light quality for germination rate improvement. The seed disinfection was carried out using distilled water (control), NaClO 4%, $H_2O_2$ 4%, and benomyl $500mg{\cdot}L^{-1}$. The light quality treatments were set to dark condition (control I), fluorescent lamp (control II), LEDs [red, blue, green, and combined RB LEDs (red:blue = 8:2, 6:4, 4:6, 2:8)] with a photoperiod of 12/12 (light/dark) and light intensity $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density. Although the Adenophora triphylla var. japonica Hara seed was an underdeveloped embryo (E) and seed (S) with an embryo (E):seed (S) ratio of 0.4, it is germinated within 30 days, and seed moisture saturation was reached within 6 hours after immersion. After seed disinfection, the mold incidence rate was significantly inhibited, and the final germination rate was the highest at 87% in the benomyl seed disinfection. The final germination rate was the highest at 92% in the red light, and the mean daily germination was the lowest in the R2B8. Therefore, there is almost no dormancy in the Adenophora triphylla var. japonica Hara seed, and benomyl seed disinfectant and red light were effective in the improvement of germination rate. So it is considered to the high value of use for medicinal crop Adenophora triphylla var. japonica Hara cultivation.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

A Study on the Calculation of Evapotranspiration Crop Coefficient in the Cheongmi-cheon Paddy Field (청미천 논지에서의 증발산량 작물계수 산정에 관한 연구)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.883-893
    • /
    • 2019
  • In this study, crop coefficients were calculated in two different methods and the results were evaluated. In the first method, appropriateness of GLDAS-based evapotranspiration was evaluated by comparing it with observed data of Cheongmi-cheon (CMC) Flux tower. Then, crop coefficient was calculated by dividing actual evapotranspiration with potential evapotranspiration that derived from GLDAS. In the second method, crop coefficient was determined by using MLR (Multiple Linear Regression) analysis with vegetation index (NDVI, EVI, LAI and SAVI) derived from MODIS and in-situ soil moisture data observed in CMC, In comparison of two crop coefficients over the entire period, for each crop coefficient GLDAS Kc and SM&VI Kc, shows the mean value of 0.412 and 0.378, the bias of 0.031 and -0.004, the RMSE of 0.092 and 0.069, and the Index of Agree (IOA) of 0.944 and 0.958. Overall, both methods showed similar patterns with observed evapotranspiration, but the SM&VI-based method showed better results. One step further, the statistical evaluation of GLDAS Kc and SM&VI Kc in specific period was performed according to the growth phase of the crop. The result shows that GLDAS Kc was better in the early and mid-phase of the crop growth, and SM&VI Kc was better in the latter phase. This result seems to be because of reduced accuracy of MODIS sensors due to yellow dust in spring and rain clouds in summer. If the observational accuracy of the MODIS sensor is improved in subsequent study, the accuracy of the SM&VI-based method will also be improved and this method will be applicable in determining the crop coefficient of unmeasured basin or predicting the crop coefficient of a certain area.

Quality Control of Agro-meteorological Data Measured at Suwon Weather Station of Korea Meteorological Administration (기상청 수원기상대 농업기상 관측요소의 품질관리)

  • Oh, Gyu-Lim;Lee, Seung-Jae;Choi, Byoung-Choel;Kim, Joon;Kim, Kyu-Rang;Choi, Sung-Won;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • In this research, we applied a procedure of quality control (QC) to the agro-meteorological data measured at the Suwon weather station of Korea Meteorological Administration (KMA). The QC was conducted through six steps based on the KMA Real-time Quality control system for Meteorological Observation Data (RQMOD) and four steps based on the International Soil Moisture Network (ISMN) QC modules. In addition, we set up our own empirical method to remove erroneous data which could not be filtered by the RQMOD and ISMN methods. After all these QC procedures, a well-refined agro-meteorological dataset was complied at both air and soil temperatures. Our research suggests that soil moisture requires more detailed and reliable grounds to remove doubtful data, especially in winter with its abnormal variations. The raw data and the data after QC are now available at the NCAM website (http://ncam.kr/page/req/agri_weather.php).

Changes of Physico-chemical Properties and Microflora of Pig Manure due to Composting with Turning Times and Depth (퇴비 부숙과정중 뒤집기 횟수에 따른 퇴적 깊이별 이화학성 및 미생물상 변화)

  • Lee, Sang-Bok;Kim, Jeong-Goo;Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo;Kim, Jai-Duk;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • This study was conducted to investigate the physico-chemical and microbiological properties in profile depth during composting process with different turning times when pig manure was composted with ground rice hulls at the rate of same for the promotion of the composting. The moisture contents, C/N rate and pH value decreased according to composting progresses as run into turning times, but increased those inside layer of the pile. $NH_4-N$ and $NO_3-N$ contents were high in the outer layer mostly, as the result the $NH_3$ flux was high in there, but it decreased as composting progresses. The number of aerobic bacteria were $10^7{\sim}10^9\;cfu\;g^{-1}$, increased as the turning times, the number of their showed high in the outer layer. The number of fungi were $10^2{\sim}10^4\;cfu\;g^{-1}$ at the early period of composting, but did't almost survive inside layer as composting progresses. The number of cellulose decomposer and thermophilic bacteria were $10^6{\sim}10^7\;cfu\;g^{-1}$ and $10^6{\sim}10^9\;cfu\;g^{-1}$, respectively, they showed high inside layer of the pile. Therefore, the turning of composting can reduce the change difference of microorganisms in the pile. Turning frequence for the promotion of composting showed approximately 2~3 times.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.