• Title/Summary/Keyword: moisture diffusion

Search Result 203, Processing Time 0.02 seconds

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane (고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향)

  • Hwang, Byungchan;Oh, Sohyung;Lee, Daewoong;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Na, Il-Chae;Lee, Jung-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

Occurrence and Distribution of C4 Plants under Diverse Agricultural Field Types in Korea (농업생태계에서 농경지유형에 따른 C4식물의 출현과 분포)

  • Cho, Kwang-Jin;Oh, Young-Ju;Kang, Kee-Kyung;Han, Min-Su;Na, Young-Eun;Kim, Miran;Choe, Lak-Jung;Kim, Myung-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.85-101
    • /
    • 2013
  • In order to search for distribution characteristics on C4 plants at the paddy fields, uplands, orchard and roadside in South Korea, vascular plants were investigated. Flora investigation had been carried out from May 2002 to October 2006 at 241 plots. In the results of survey, the flora of these areas consist of 74 families, 231 genera and 352 species totally. The class frequencies were arranged by the order of Magnoliopsidae (255 species), Monocotyledoneae (89 species), Pteropsida (7 species) and Sphenopsida (1 species). The number of species in each investigated agricultural field types was 55 families with 203 species in paddy field, 49 families with 218 species in uplands, 44 families with 115 species in orchard and 48 families with 202 species in roadside respectiviely. Representative species compositions of these four agricultural field types were characterized by Artemisia princeps, Persicaria thunbergii in paddy field, Artemisia princeps, Erigeron annuus in upland and roadside, Commelina communis, Digitaria ciliaris in orchard, respectively. Therefore, indicative species in agricultural ecosystem was Artemisia princeps. Among the investigated 352 species, $C_4$ plants identified were 38 species, and the occurrence ratio of $C_4$ monocotyledonous plants were higher in paddy field, orchard and roadside than upland. Such differences in the occurrence ratio of $C_4$ plants under diverse agricultural field types reflect differences in environmental condition such as micro-climate, soil moisture under various agricultural fields. Dominant $C_4$ monocotyledonous plants were Digitaria ciliaris and Commelina communis, while $C_4$ dicotyledonous plants were Amaranthus mangostanus and Chenopodium album var. centrorubrum in agricultural fields. Naturalized plants were identified as 47 species and occurrence ratio were higher in upland and roadside than other agricultural field types. Among the investigated naturalized plants, $C_4$ plants were Amaranthus mangostanus and Amaranthus retroflexus. Distribution characteristics of representative $C_4$ plants in agricultural field types, revealed that the projected increase in temperature due to climate change may provide better conditions for the growth of $C_4$ plants. Thus, the necessity of long-term monitoring should be conducted on the diffusion of $C_4$ plants that may threaten influence agroecosystem in Korea.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.