• Title/Summary/Keyword: modulus of thermal expansion

Search Result 173, Processing Time 0.024 seconds

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects (에폭시-산무수물 조성물의 경화거동 및 실리카 첨가에 따른 특성변화 연구)

  • Lee, Chung Hee;Kim, Kyoung-Mahn
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • Epoxy/anhydride systems with silica filler were studied to improve the cure behavior and characteristics. To study the curing process of epoxy/anhydride using DSC and a stress rheometer, it was observed that gelation temperature increased by increasing the thermal rate or in high isothermal conditions, while it was observed that the degree of cure at gelation decreased. Thermal stability of the epoxy/anhydride system showed any increment by increasing silica contents, except slight decrease of weight by containing humidity. The epoxy resin cured with 30% of silica filler decreased coefficient thermal expansion (CTE) about 33% to show $40ppm/^{\circ}C$. Specimens filled with 30 wt% of silica showed 60% increase in storage modulus at $30^{\circ}C$ to show 3909 MPa compared with neat resin to 2,377 MPa. Epoxy/anhydride systems with surface treated silica by silane coupling agent decreased storage modulus.

  • PDF

Physical Properties of Sedimentary Rocks containing Dinosaur Trace Fossils in the Haenam: A Relationship with Chert Content (해남 공룡화석 지 퇴적암의 물리적 성질: 쳐트 함량과의 관계)

  • 조현구;김수진;장세정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • The physical properties of Uhangri sedimentary rocks were investigated to provide the conservation strategy of Dinosaur trace fossil in the Haenam. The porosity, void ratio, dry density, water content, and degree of saturation were calculated according to the proper laboratory experiments for 9 sedimentary specimens. The flexural strength (or modulus of rupture) and thermal expansion coefficient were measured using the universal testing machine and dilatometer, respectively. The Uhangri sedimentary rocks have very low porosity, void ratio, and water content. The flexural strength of shales are 24.16~42.84, and those of sandstones are 16.34~ $43.52N/mm^2$, which are much weaker than common sedimentary rocks. The very low flexural strength of sedimentary rocks despite very low porosity, is ascribed to fine fissures in the rocks. The thermal expansion coefficient of rocks were $14.7~21.3\Times10^{-6 }$, which are 2~2.5 times as high as alumina and about 10 times as high as talc. As the content of chert in the sandstone increases, the porosity, void ratio, and water content increase, while the dry density and degree of saturation decrease. The chert-bearing sandstone have higher porosity and thermal expansion coefficient, and lower flexural strength compared to those free of chert.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites (홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF

Study on spaceborne telescope structure with high stability using new composite materials (신소재 복합재료를 이용한 우주용 카메라 구조의 고안정화 설계에 관한 연구)

  • EUNG-SHIK LEE;SUN-HEE WOO
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.132-136
    • /
    • 2003
  • A Multi-Spectral Camera (MSC) is the payload of KOMPSAT-2 which is designed for earth imaging in visible and near-Infrared region on a sun-synchronous orbit. The telescope in the MSC is a Ritchey-Chretien type with large aperture. The telescope structure should be well stabilized and the optical alignment should be kept steady so that best images can be achieved. However, the MSC is exposed to adverse thermal environment on the orbit which can give impacts on optical performance. Metering structure which is exposed to adverse space environment should have tight requirement of low thermal expansion and hygroscopic stability. In order to meet those stability requirements in addition to fundamental structural ones telescope structure was designed with newly developed graphite-cyanate composite which has high tensile modulus, high thermal conductivity and low moisture absorption compared with conventional graphite-epoxy composite. In this paper, space-borne telescope structure with new composite material will be presented and fulfillment of stability requirements will be verified with designed structure.

  • PDF

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.