• Title/Summary/Keyword: modulus

Search Result 6,044, Processing Time 0.041 seconds

Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties (라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성)

  • Kim, W.H.;Kang, J.H.;Kang, B.S.;Cho, U.R.
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Effect of Magnesium Oxide on Physical and Chemical Properties of FKM Elastomer (FKM Elastomer의 물리적 및 화학적 성질에 미치는 산화마그네슘의 영향)

  • Lee, Chang-Seop;Choi, Gi-Tae;Choi, Han-Hwal
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • Metal oxide(MgO) was added to FKM rubber in order to develop automotive fuel hose which ran show elastic characteristics under extreme condition. Cure characteristics, physical properties, thermal resistance and fuel resistance of FKM compounded rubber with MgO were investigated. MgO was mixed to FKM rubber materials within the range of $0{\sim}20phr$. From the test results of rheological properties and Mooney viscosity, the $t_{s2}$, $T_{c90}$ values increased as the MgO contents increased in FKM rubber compounding. Hardness and 100% modulus of FKM compounded rubber slightly increased, but tensile strength and elongations at break slightly decreased. From the test results of thermal resistance of rubber specimens at 130, 150, and $170^{\circ}C$ for 70 hrs, the changing rate of physical properties was found to be relatively small. Fuel resistance tests were carried out for fuel A, B, C and D at $40^{\circ}C$ for 70hrs, and the results showed that the changing rate in physical properties was found to increase from Fuel A to D, Furthermore thermal properties of FKM compounded rubber containing MgO were also investigated by using TGA/DSC. The optimum mixing ratio of additive to FKM rubber to get the maximum effect on thermal resistance and fuel resistance, within the range of desirable specification for rubber material, was determined to be 6 phr for MgO.

A Study on the Commercialization of Polyamide 66/Polypropylene Blend (폴리아마이드 66/폴리프로필렌 블렌드의 상업화 연구)

  • Kim, Seog-Jun;Nam, Byeong-Uk
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.262-272
    • /
    • 2003
  • Maleic anhydride-grafted-polypropylene(PP-g-MA) were used as a blend component and a compatibilizer, respectively, for two reactive blends of polyamide 66(PA 66)PP-g-MA binary blends and PA 66/polypropylene(PP)/PP-g-MA ternary blends. The goal of this work was to investigate the property differences between binary and ternary blends. Tensile strength, flexural modulus, heat deflection temperature, impact strength, melt flow index, and the dependence of melt viscosity on the shear rate were examined. The impact strengths of binary blends were higher than those of ternary blends at all compositions, since the in situ synthesis of PP-g-PA 66 copolymer through the imide formation between the amine end group of PA 66 and the anhydride group of PP-g-MA gave the increase of molecular weight and was more popular in binary blends than in ternary blends. In case of ternary blends, most of the properties were superior to those of binary blends, owing to the better properties of PP compared with PP-g-MA. The toughened binary blends with 70/30(PA 66/PP-g-MA) and 80/20 ratios were not commercially applicable due to their poor processibility. So, the ternary blends which showed lower melt viscosities were recommended for the commercial applications.

Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites (폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화)

  • Choi, Ki-Woon;Lee, Han-Sup;Kang, Bok-Choon;Yang, Hoi-Chang
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.294-299
    • /
    • 2010
  • Clay-loaded polypropylene (PP) nanocomposites were fabricated via melt-compounding of two molecular weight ($M_w$) PPs (140 and 410 kg/mol) and octadecylammine-treated clay (C18MMT), with the assistance of maleic anhydride-grafted PP(PP-MAH), respectively, at $170^{\circ}C$ and $190^{\circ}C$. At both melt-compounding temperatures, the low-$M_w$ PP tends to easily diffuse into silicate layers, especially in the presence of the mobile PP-MAH, resulting in a marked increase in silicate layer spacing (above 58 $\AA$), when compared to 27 $\AA$ in the high-$M_w$ PP-based system. Due to relatively lower melt-viscosity of the low-$M_w$ PP-based system, however, there existed quasi-stacked clay aggregates with a thickness of 60~80 nm, while the high-$M_w$ PP-based nanocomposites showed relatively homogeneous dispersion of clays. The different morphologies are mainly related to changes in the viscoelastic properties of PPs, dependent on the processing temperature and their $M_{w}s$. The slight differences in nanocomposites induce discernible crystallization and mechanical behaviors. High-$M_w$ PP-based nanocomposites containing 1~3 wt% C18MMT showed improvement in both tensile strength and modulus, while maintaining the inherent ductility of pure PP.

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.

Fracture toughness of high performance concrete subjected to elevated temperatures Part 2 The effects of heating rate, exposure time and cooling rate

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.513-537
    • /
    • 2017
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was investigated by conducting three-point bending tests on a total of 240 notched beams of $500mm{\times}100mm{\times}100mm$ subjected to heating temperatures up to $450^{\circ}C$ with exposure times up to 16 hours and various heating and cooling rates. For a heating rate of $3^{\circ}C/min$, $K_{IC}$ for the hot concrete sustained a monotonic decrease trend with the increasing heating temperature and exposure time, from $1.389MN/m^{1.5}$ at room temperature to $0.942MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.906MN/m^{1.5}$ for 8-hour exposure time and $0.866MN/m^{1.5}$ for 16-hour exposure time. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and then rapidly down to $0.869MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.812MN/m^{1.5}$ for 8-hour exposure time and $0.771MN/m^{1.5}$ for 16-hour exposure time. In general, the $K_{IC}$ values for the hot concrete up to $200^{\circ}C$ were larger than those for the cold concrete, and an inverse trend was observed thereafter. The increase in heating rate slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.893MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.839MN/m^{1.5}$ for $10^{\circ}C/min$ for the hot concrete and from $0.792MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.743MN/m^{1.5}$ for $10^{\circ}C/min$ for the cold concrete after an exposure time of 16 hours. The increase in cooling rate also slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.771MN/m^{1.5}$ for slow cooling to $0.739MN/m^{1.5}$ for fast cooling after an exposure time of 16 hours. The fracture energy-based fracture toughness $K_{IC}$' was also assessed, and similar decrease trends with the heating temperature and exposure time existed for both hot and cold concretes. The relationships of two fracture toughness parameters with the weight loss and the modulus of rapture were also evaluated.

Application of cold plasma treatment as a method to improve the physical properties of defatted mustard meal-based edible films (탈지 겨자씨 소재 가식성 필름의 물리적 특성 향상을 위한 콜드 플라즈마의 적용)

  • Jeong, Ha Eun;Oh, Yoon Ah;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.634-639
    • /
    • 2021
  • This study investigated the effects of cold plasma (CP) treatment on the properties of biopolymer films prepared with defatted mustard meal (DMM films). CP treatments using N2, O2, He, Ar, and dry air did not affect the tensile properties, water vapor permeability, color, and morphology of DMM films, whereas the treatments using He and Ar improved their printability. The tensile strength (TS) of O2- or air-CP-treated DMM films and the elastic modulus (EM) of O2-, He-, Ar-, or air-CP-treated films were lower than those of the untreated films. An increase in the power of Ar-CP treatment resulted in an increase in EM. The optimum treatment power and time for minimizing yellowness changes by Ar-CP treatment were 420 W and 40 min, respectively. The results demonstrated the potential application of CP treatment to improve the film properties of DMM films and possibly other agricultural by-product-based biopolymer films, making the films more applicable to food packaging.

Physicochemical Properties of Extruded Defatted Hemp Seed and Its Energy Bar Manufacturing (압출성형 삼종실의 이화학적 특성과 에너지바의 제조)

  • Gu, Bon-Jae;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study was to develop high-nutritious energy bar from extruded hemp obtained by extrusion process. Mixture of rice flour and defatted hemp was extruded at a barrel temperature of 110 and 130$^{\circ}C$, and moisture content of 20 and 25%. Properties of extrudates such as bulk density, expansion index, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI) have been analyzed. The antioxidant potential was determined by the DPPH-radical scavenging assay. The expansion index was the highest in rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content among the other hemp-added extrudates. The WAI was increased with increase in moisture content, while the WSI was increased with increase in barrel temperature. The peak viscosity of rice extrudate had higher valule than those of extrudate added with hemp. DPPH scavenging activity of rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content showed the highest value. Sensory properties, moisture content and color were assessed for quality of energy bar. The color values of the energy bar indicated decreasing L (lightness) and b (yellowness), and increasing a (redness) after 30 days storage at ambient condition. The highest overall acceptable was the energy bar added with rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content.