• Title/Summary/Keyword: module fabrication

Search Result 319, Processing Time 0.025 seconds

Surface Measurement of Microstructures Using Optical Pick-up Based Scanner (광픽업 스캔 장치를 이용한 미소 구조물의 표면 측정)

  • Kim, Jae-Hyun;Park, Jung-Yul;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.73-76
    • /
    • 2010
  • The issue of inspection and characterization of microstructures has emerged as a major consideration in design, fabrication, and detection of MEMS devices. However, the conventional measurement techniques, including scanning electron microscopy (SEM) imaging, atomic force microscopy (AFM) scanning, and mechanical surface profiler, require often destructive process or may be difficult to measure with a wafer scale. In this paper, we characterize the surface profiles of microstructures using an optical scanner based on a DVD pick-up module. Scanning images of the microstructures are successfully generated using the intensity of reflected light from different depths of the surface profiles, based on the focus error signal (FES) from photodiodes. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and low cost, compared to conventional measurement techniques.

A Study on the Measurement of Aerodynamic Load of Aircraft Wing (항공기 날개의 공력하중 측정 기법 연구)

  • Kang, Seung-Hee;Lee, Jong-Geon;Lee, Seung-Soo;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2002
  • A study on the test, design and fabrication of wind tunnel model for measurement of air load distribution on wing surfaces is presented. 447 pressure taps are installed normal to the wing surfaces, and measured by PSI-8400 system using total 8 ESPs modules installed in the model. The test was performed at 50 m/sec constant speed in the low speed wind tunnel of Agency for Defense Development. Tests were carried out to determine effects of angle of attack, angle of sideslip and flap and stores for the load distribution of wing. The test results in this paper can be applied to the design optimization of structure and validation of computational fluid dynamics.

Analysis of fast pressure control by the Ziegler-Nichols method for a transport module of a high vacuum cluster tool (고진공 클러스터 장비의 반송모듈에 적용된 Ziegler-Nichols 방법에 의한 고속 압력제어에 관한 해석)

  • 장원익;이종현;백종태
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.284-291
    • /
    • 1996
  • We have implemented a fast pressure control system for the transport chamber of a high vacuum cluster tool for advance semiconductor fabrication and evaluated its performance. To overcome the typically slow response of mass flow controllers, the modified experimental method is used very effectively to optimize the pressure control procedure. We successfully obtained quite fast pressure control by adjusting the starting time and eht tuning constants by the Ziegler-Nichols method. In the transport pressure $10\times 10^{-5}$ torr, actual pressure control starts from 4 sec after an initial gas load of 2.1 sccm. As a result, optimum conditions for the tuning constants are the rise rate of 0.02 torr/sec, the lag time of 0.15 sec, and the sampling period of 0.5 sec. Then the settling time is about 9 sec within about $\pm$0.5% for the referenced value. This settling time is enhanced above 75 percents in comparison with conventional experimental method. To account for the experimental effects observed, a theoretical model was developed. This experimental result has a tendency to fit with the theoretical result of $\omega$=-1.0.

  • PDF

Front-End Module of 18-40 GHz Ultra-Wideband Receiver for Electronic Warfare System

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • In this study, we propose an approach for the design and satisfy the requirements of the fabrication of a small, lightweight, reliable, and stable ultra-wideband receiver for millimeter-wave bands and the contents of the approach. In this paper, we designed and fabricated a stable receiver with having low noise figure, flat gain characteristics, and low noise characteristics, suitable for millimeter-wave bands. The method uses the chip-and-wire process for the assembly and operation of a bare MMIC device. In order to compensate for the mismatch between the components used in the receiver, an amplifier, mixer, multiplier, and filter suitable for wideband frequency characteristics were designed and applied to the receiver. To improve the low frequency and narrow bandwidth of existing products, mathematical modeling of the wideband receiver was performed and based on this spurious signals generated from complex local oscillation signals were designed so as not to affect the RF path. In the ultra-wideband receiver, the gain was between 22.2 dB and 28.5 dB at Band A (input frequency, 18-26 GHz) with a flatness of approximately 6.3 dB, while the gain was between 21.9 dB and 26.0 dB at Band B (input frequency, 26-40 GHz) with a flatness of approximately 4.1 dB. The measured value of the noise figure at Band A was 7.92 dB and the maximum value of noise figure, measured at Band B was 8.58 dB. The leakage signal of the local oscillator (LO) was -97.3 dBm and -90 dBm at the 33 GHz and 44 GHz path, respectively. Measurement was made at the 15 GHz IF output of band A (LO, 33 GHz) and the suppression characteristic obtained through the measurement was approximately 30 dBc.

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

Design and Fabrication of 26.4 GHz Local Oscillator for Satellite Payload (위성 탑재체용 26.4 GHz 국부발진기의 설계 및 제작)

  • Shin Dong-Hwan;Ryu Keun-Kwan;Chang Dong-Pil;Lee Moon-Que;Yom In-Bok;Oh Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.194-200
    • /
    • 2006
  • A 26.4 GHz phase locked oscillator(PLO) for communication satellite transponder is developed. The PLO consists of fundamental frequency generation module(FFGM) and frequency multiplication part(FMP). The signal of 26.4 GHz is generated through frequency tripling process of 8.8 GHz fundamental frequency. Phase locking technique using sampling phase detector(SPD) is adopted to design the FFGM. The MMIC tripler and amplifier are also designed for the reduction of the size and mass of FMP. The phase noise characteristics are exhibited as -96 dBc/Hz at 10 tHz offset frequency and -105 dBc/Hz at 100 kHz offset frequency, respectively, with the output power over 11 dBm. All performance parameters are complied with the design requirements.

Multi-physics analysis for the design and development of micro-thermoelectric coolers

  • Han, Seung-Woo;Hasan, MD Anwarul;Kim, Jung-Yup;Lee, Hyun-Woo;Lee, Kong-Hoon;Kim, Oo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.139-144
    • /
    • 2005
  • A rigorous research is underway in our team, for the design and development of high figure of merits (ZT= 1.5${\sim}$2.0) micro-thermoelectric coolers. This paper discusses the fabrication process that we are using for developing the $Sb_2Te_3-Bi_2Te_3$ micro-thermoelectric cooling modules. It describes how to obtain the mechanical properties of the thin film TEC elements and reports the results of an equation-based multiphysics modeling of the micro-TEC modules. In this study the thermoelectric thin films were deposited on Si substrates using co-sputtering method. The physical mechanical properties of the prepared films were measured by nanoindentation testing method while the thermal and electrical properties required for modeling were obtained from existing literature. A finite element model was developed using an equation-based multiphysics modeling by the commercial finite element code FEMLAB. The model was solved for different operating conditions. The temperature and the stress distributions in the P and N elements of the TEC as well as in the metal connector were obtained. The temperature distributions of the system obtained from simulation results showed good agreement with the analytical results existing in literature. In addition, it was found that the maximum stress in the system occurs at the bonding part of the TEC i.e. between the metal connectors and TE elements of the module.

  • PDF

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

A study on fabrication of HNS remote sensor module with printed ITO films (ITO 인쇄박막을 이용한 원격 감시형 위험유해물질 검출 센서 모듈 제작에 관한 연구)

  • Lee, Seok-Hwan;Cho, Sung-Min;Kim, Chang-Min;Kim, Hyeong-Ho;Yang, Han-Uk;Oh, Ji-Eun;Chang, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.325-329
    • /
    • 2016
  • In this study, we investigated the feasibility of using printed Indium Tin Oxide (ITO) film as a remote sensor for Hazardous and Noxious Substances (HNS). To improve the quality of the ITO films, binder mixing ratio, Sn concentration in ITO, thermal treatment temperature, and printing process conditions were optimized. We fabricated an electrical resistance-type liquid sensor, and to confirm the sensor operation, the change in resistance in air and seawater was monitored. The change in resistance of the ITO sensor was explained in terms of reduction reaction on the surface. Further, the sensor was controlled by Arduino, and the remote data acquisition was demonstrated.