• Title/Summary/Keyword: modulation-transfer function

Search Result 297, Processing Time 0.033 seconds

Design of Multi-phase Holographic Optical Low-pass Filter for the Improvement of the MTF Characteristics (홀로그램 광 저대역 필터의 MTF 특성 개선을 위한 다중 위상 설계)

  • Oh, Yong-Ho;Go, Chun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.334-339
    • /
    • 2005
  • We studied the spatial filtering characteristics of a multi-phase hologram optical low-pass filter(HOLF). Using the Monte-Carlo based hologram generation program, we designed holograms whose diffraction patterns are circular shaped 21 beams and calculated the diffraction efficiencies and MTFs. 4-phase HOLF have the same diffraction efficiency as that of 2-phase HOLF. The MTF graphs of the two are also nearly alike. But 8-phase HOLF shows higher efficiency than those previously discussed and has larger MTF values in the low frequency region. 16-phase HOLF has just a little better characteristics than 8-phase. Considering the errors which can arise in the process of making holograms, 8-phase HOLF fits the goal of improving the resolution of spatial filter. We also fabricated 8-phase HOLF and .measured MTF The experimental results agree well with the theoretical expectations.

Some Applications of SAR Imagery to the Coastal Waters of Korea (한국 주변 해역에서의 SAR 영상 응용예)

  • 김태림
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • Several physical phenomena on the sea surface are analyzed from SAR images of South Sea areas, Korea. Strong wave patterns propagating in southerly direction are seen in ERS-1 SAR image on October 11, 1994, and a wave directional spectrum is calculated from this image using the SAR modulation transfer function. RADARSAT SAR image of August 15, 1996 reveals internal waves in northern coastal waters of Cheju Island. Analysis indicates that the internal waves may have been generated by the tidal currents traveling over the shallow bottom of the stratified water in the summer during the tidal changeovers fro ebb to flood and shows patterns of trains of solitons. RADARSAT SAR image taken 3 days after the oil spill accident near Goeje Isalnd on April 3, 1997 detects distinct oil slicks from the accident area but also shows slicks near the coast caused by wind sheltering of coastal mountains and chemical-biological activities.

A TiO2-Coated Reflective Layer Enhances the Sensitivity of a CsI:Tl Scintillator for X-ray Imaging Sensors

  • Kim, Youngju;Kim, Byoungwook;Kwon, Youngman;Kim, Jongyul;Kim, MyungSoo;Cho, Gyuseong;Jun, Hong Young;Thap, Tharoeun;Lee, Jinseok;Yoon, Kwon-Ha
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.256-260
    • /
    • 2014
  • Columnar-structured cesium iodide (CsI) scintillators doped with thallium (Tl) are frequently used as x-ray converters in medical and industrial imaging. In this study we investigated the imaging characteristics of CsI:Tl films with various reflective layers-aluminum (Al), chromium (Cr), and titanium dioxide ($TiO_2$) powder-coated on glass substrates. We used two effusion-cell sources in a thermal evaporator system to fabricate CsI:Tl films on substrates. The scintillators were observed via scanning electron microscopy (SEM), and scintillation characteristics were evaluated on the basis of the emission spectrum, light output, light response to x-ray dose, modulation transfer function (MTF), and x-ray images. Compared to control films without a reflective layer, CsI:Tl films with reflective layers showed better sensitivity and light collection efficiency, and the film with a $TiO_2$ reflective layer showed the best properties.

Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography

  • Park, Ha-Na;Min, Chang-Ki;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • Purpose: This study was performed to investigate the effect of exposure parameters on image quality obtained using a cone-beam computed tomography (CBCT) scanner and the relationship between physical factors and clinical image quality depending on the diagnostic task. Materials and Methods: CBCT images of a SedentexCT IQ phantom and a real skull phantom were obtained under different combinations of tube voltage and tube current (Alphard 3030 CBCT scanner, 78-90 kVp and 2-8 mA). The images obtained using a SedentexCT IQ phantom were analyzed technically, and the physical factors of image noise, contrast resolution, spatial resolution, and metal artifacts were measured. The images obtained using a real skull phantom were evaluated for each diagnostic task by 6 oral and maxillofacial radiologists, and each setting was classified as acceptable or unacceptable based on those evaluations. A statistical analysis of the relationships of exposure parameters and physical factors with observer scores was conducted. Results: For periapical diagnosis and implant planning, the tube current of the acceptable images was significantly higher than that of the unacceptable images. Image noise, the contrast-to-noise ratio (CNR), the line pair chart on the Z axis, and modulation transfer function (MTF) values showed statistically significant differences between the acceptable and unacceptable image groups. The cut-off values obtained using receiver operating characteristic curves for CNR and MTF 10 were useful for determining acceptability. Conclusion: Tube current had a major influence on clinical image quality. CNR and MTF 10 were useful physical factors that showed significantly associations with clinical image quality.

Correlation analysis between radiation exposure and the image quality of cone-beam computed tomography in the dental clinical environment

  • Song, Chang-Ho;Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.283-288
    • /
    • 2022
  • Purpose: This study was conducted to measure the radiation exposure and image quality of various cone-beam computed tomography (CBCT) machines under common clinical conditions and to analyze the correlation between them. Materials and Methods: Seven CBCT machines used frequently in clinical practice were selected. Because each machine has various sizes of fields of view (FOVs), 1 large FOV and 1 small FOV were selected for each machine. Radiation exposure was measured using a dose-area product (DAP) meter. The quality of the CBCT images was analyzed using 8 image quality parameters obtained using a dental volume tomography phantom. For statistical analysis, regression analysis using a generalized linear model was used. Results: Polymethyl-methacrylate (PMMA) noise and modulation transfer function (MTF) 10% showed statistically significant correlations with DAP values, presenting positive and negative correlations, respectively (P<0.05). Image quality parameters other than PMMA noise and MTF 10% did not demonstrate statistically significant correlations with DAP values. Conclusion: As radiation exposure and image quality are not proportionally related in clinically used equipment, it is necessary to evaluate and monitor radiation exposure and image quality separately.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Evaluation of Comparison of Noise Power Spectrum according to the Time of Using Electronic Portal Imaging Device (EPID) for LINAC System (선형가속기의 시간에 따르는 전자조사문영상기구의 잡음전력스펙트럼 비교 평가)

  • Jung-Whan Min;Hoi-Woun Jeong
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.117-123
    • /
    • 2024
  • This study was to assessment of quality assurance (QA) and noise characteristics of Noise Power Spectrum (NPS) according to the time of by using electronic portal imaging device (EPID) for LINAC (Linear Accelerator). LINAC device was (Varian ClinacR iX LINAC, USA) used and the were 40 × 30 cm2 of detector size were 1024 × 768 photo-electric diode array size. Signal could be obtained the K-space image of white noise images for NPS and we used to Overlap, Non-Overlap, Out of Penumbra, Flatness, Symmetry, Symmetry Rt, Lt methods. The 2013s NPS image Out of Penumbra quantitatively value more than 2013s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. Thus, the 2022s NPS image Out of Penumbra quantitatively value more than 2022s NPS image Symmetry Rt, Lt methods quantitatively NPS based on the frequency of 1.0 mm-1. The assessment of comparison of white noise for NPS image noise and intensity of this study were to that should be used efficiently of the LINAC EPID detector system for Overlap method for International Electro-technical Commission (IEC).

Image quality-based dose optimization in pediatric cone-beam computed tomography: A pilot methodological study

  • Hak-Sun Kim;Yoon Joo Choi;Kug Jin Jeon;Sang-Sun Han;Chena Lee
    • Imaging Science in Dentistry
    • /
    • v.54 no.3
    • /
    • pp.264-270
    • /
    • 2024
  • Purpose: This study aimed to propose a methodological approach for reducing the radiation dose in pediatric cone-beam computed tomography (CBCT), focusing exclusively on balancing image quality with dose optimization. Materials and Methods: The dose-area product (DAP) for exposure was reduced using copper-plate attenuation of an X-ray source. The thickness of copper (Cu) was increased from 0 to 2.2 mm, and 10 different DAP levels were used. The QUART DVT_AP phantom and pediatric radiologic dentiform were scanned under the respective DAP levels. The contrast-to-noise ratio (CNR), image homogeneity, and modulation transfer function (MTF) were analyzed using the QUART DVT_AP phantom. An expert evaluation (overall image grade, appropriateness of field of view, artifacts, noise, and resolution) was conducted using pediatric dentiform images. The critical DAP level was determined based on phantom and dentiform analysis results. Results: CNR and image homogeneity decreased as the DAP was reduced; however, there was an inflection point of image homogeneity at Cu 1.6 mm (DAP=138.00 mGy·cm2), where the value started increasing. The MTF showed constant values as the DAP decreased. The expert evaluation of overall image grades showed "no diagnostic value" for dentiform images with Cu 1.9-2.2 mm (DAP=78.00-103.33 mGy·cm2). The images with Cu 0-1.6 mm (DAP=138.00-1697.67mGy·cm2) had a "good," "moderate," or "poor but interpretable" grade. Conclusion: Reducing DAP beyond a 1.6-mm Cu thickness degraded CBCT image quality. Image homogeneity and clinical image grades indicated crucial decision points for DAP reduction in pediatric CBCT scans.

Survey of Technical Parameters for Pediatric Chest X-ray Imaging by Using Effective DQE and Dose (유효검출양자효율과 선량을 이용한 소아 흉부 X-선 영상의 기술적인 인자에 관한 조사)

  • Park, Hye-Suk;Kim, Ye-Seul;Kim, Sang-Tae;Park, Ok-Seob;Jeon, Chang-Woo;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.163-171
    • /
    • 2011
  • The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kVp in 10 kVp increments at the FDD of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at the same effective dose. The results showed that the eDQE was largest at 60 kVp when compares the eDQE at different tube voltage. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF). However, most of major hospitals in Korea employed a short FDD of 100 cm with an anti-scatter grid for the chest radiological examination of a 15 month old infant. As a result, the entrance surface air kerma (ESAK) values for the hospitals of this survey exceeded the Korean DRL (diagnostic reference level) of $100{\mu}Gy$. Therefore, appropriate technical parameters should be established to perform pediatric chest examinations on children of different ages. The results of this study may serve as a baseline to establish detailed reference level of pediatric dose for different ages.