• Title/Summary/Keyword: modified tension test

Search Result 78, Processing Time 0.024 seconds

Basic Efficiency Assessment of polymer cementitious Self leveling for floor-finishing materials (폴리머 시멘트계 Self leveling 바닥마감재의 기초성능평가)

  • 도정윤;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1005-1010
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top layers with thin thicknesses, typically 5~ 15mm. The purpose of this study is to evaluate basic properties of self leveling materials using polymer modifier as kinds of SBR, PAE, SUBA. Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as in order to facilitate the workability required. The self leveling materials using four types of polymer dispersion are prepared with polymer-cement ratios which respectively range from 50%, 75%, and were tested for basic characteristics such as adhesion in tension, crack resistance test, rebound test after the preparative tests for unit weight, air content, consistency ratio etc. The results show almost as equal quality as existing commercial industrial flooring when mortar is modified by polymer dispersion. Adhesion in tension of polymer modified mortars using each SBR and PAE emulsion was over 10 kgf/$cm^{2}$. Crack or flaw derived from shrinkage is strongly dependent on the type of polymer dispersion because of each different total solid of polymer. It is judged that polymer modified mortar with self-leveling can be very well suited for Floor-finished.

  • PDF

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

A study of the shear properties for hybrid composites (하이브리드 복합재료의 전단 물성치 측정에 관한 연구)

  • 백운철;조맹효;황재석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.96-99
    • /
    • 2002
  • In order to determine the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, a new Iosipescu shear test fixture was developed, by using a fixture undergoing tensile force for the specimen edge to be subjected to compressive loads assumption, under plane stress. Also, to compare the results, Iosipescu shear test method by the modified Wyoming fixture and the off-axis tensile test were performed to determine the shear properties. Off-axis tension test was performed by using new oblique-shaped tabs proposed by Sun and Chung. [5] The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. It is observed through the experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test.

  • PDF

The Effects of Proprioceptive Neuromuscular Facilitation Stretching and Ballistic Stretching on Hip Joint Flexibility and Muscle Tone (고유수용성 신경근 촉진 스트레칭 기법과 탄성 스트레칭 기법이 엉덩관절 유연성 및 근 긴장도에 미치는 영향)

  • Tae-Woo Kang;Seo-Yoon Park
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • Purpose: The purpose of this study is to compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching, based on ballistic stretching and the contract-relax technique, on hip joint flexibility and muscle tone in adults with shortened rectus femoris muscles. Methods: The study involved 40 adults with shortened rectus femoris muscles, identified using the modified Thomas test. Participants were randomly divided into two groups: PNF stretching, employing the contract-relax technique, and ballistic stretching. Measurements included muscle tension, hip joint range of motion, and muscle characteristics. The rectus femoris muscle shortening effect was confirmed by the modified Thomas test, while the flexibility effect was assessed through hip joint motion range. The muscle tension effect was determined using Myoton-PRO. Results: Both stretching methods resulted in significant improvements in modified Thomas test angles and frequency, with the PNF stretching group showing notably greater changes. However, neither stretching method significantly affected decrement or stiffness measurements. These findings suggest that PNF stretching may be more effective for certain outcomes compared to ballistic stretching. Conclusion: In summary, both stretching methods positively influenced flexibility and muscle tension, with PNF stretching showing a greater impact. These findings highlight the importance of selecting the appropriate stretching technique for achieving functional improvements in muscles, which could serve as valuable indicators for preventing and treating muscle injuries in both sports and daily activities.

A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar (폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구)

  • 김영집;김한엽;조영구;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

High strain rate tensile test of sheet metals with a new tension split Hopkinson bar (박판의 고변형률에서의 기계적특성을 얻기위한 Tension Split Hopkinson bar의 제작 및 실험)

  • Jung, Dong-Taek;Huh, Hoon;Kang, Woo-Jong;Cho, Sang-Soon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.106-110
    • /
    • 1997
  • A split Hopkinson bar has been used for obtaining material properties in high strain rate state, In this paper, the apparatus was modified to obtain the high strain rate properties of sheet metal for an autobody. From the experiments with the new apparatus, the material properties of SPCEN in the high strain rate state have been acquired and compared with quasi-static experimental results.

  • PDF

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

Development of Polymer-Modified Cementitious Self-Leveling Materials for Thin Coat

  • Kim, Wan-Ki;Do, Jeong-Yun;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top coat with thin thickness, typically 5~15mm. The purpose of this study is to evaluate basic properties of self-leveling materials using polymer dispersions as kinds of SBR, PAE, St/BA with thin coat (under 3mm). Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as to facilitate the workability required. The self-leveling materials using four types of polymer dispersion are prepared with polymer-cement ratio which respectively range from 50% and 75%, and tested for basic characteristics such as unit weight, air content, flow, consistency change and adhesion in tension. From the test results, the self-leveling materials using PAE emulsion at curing age of 28days are almost equal to those of conventional floor using urethane and epoxy resin. The adhesion in tension of self-leveling mortars using SBR latex and PAE emulsion at curing age of 3days is over 17 kgf/cm$^2$(1.67MPa). Consistency change is strongly dependent on the type of polymer dispersion. It is concluded that the self-leveling materials using polymer dispersions can be used in the same manner as conventional floor using thermosetting resin in practical applications, in the selection of polymer dispersions.

  • PDF

A Comparison Study for the Fatigue Behavior of H/T and T/S Bolt Friction Joint (H/T 와 T/S 볼트 마찰이음의 피로거동 비교·검토)

  • JUN, Je Sang;WOO, Sang Ik;LEE, Seong Heang;JUNG, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.139-150
    • /
    • 1996
  • H/T(High Tension) bolt is generally being used in joining the members of steel structure. It has some difficulties in management such as an adequate fastening force and a selection of proper instrument for fastening. T/S(Torque Shear Type High Tension) bolt which is more convenient and easier than H/T bolt in quality control has recently been developed. T/S bolts are produced and widely used these days in domestic, but those have not a detail regulation for their on. Those are only being used according to the specification for the H/T bolts. In this study, we tried to confirm the soundness of T/S bolts by the fatigue test of the modified specimens. First, we measured the reduction rate of the initial axial force with time at bolts. Second, we investigated the slip forces of bolts when the test specimen is loaded in tension. Third, we implemented the fatigue tests. During the test, we measured the variation of the axial forces of bolts under the cyclic loading. Finally, we compared and analyzed the fatigue behavior of H/T and T/S bolt, by S-N curve diagrams that are obtained in this study.

  • PDF

Inplane Shear Material Properties of Unidirectional Carbon Fiber Reinforced Aluminum Laminate Composites (일 방향 탄소섬유 강화 알루미늄 적층 복합재료의 전단물성치 측정에 관한 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2114-2121
    • /
    • 2002
  • In order to study the effects of oblique tabs on the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, the 10$^{\circ}$off-axis tensile test, the 45 $^{\circ}$off-axis tensile test and Iosipescu shear test were performed to determine the shear properties. Off-axis tension test was studied by using new oblique-shaped tabs proposed by Sun and $Chung^{(7)}$. Iosipescu shear test was studied by using modified Wyoming test fixture. The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. The experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test. The 45$^{\circ}$off-axis tensile tests are recommended for the determination of the shear properties of unidirectional carbon fiber reinforced aluminum laminated composites.