• 제목/요약/키워드: modified stress-strain model

검색결과 170건 처리시간 0.029초

Creep strain modeling for alloy 690 SG tube material based on modified theta projection method

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1570-1578
    • /
    • 2022
  • During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1-5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.

시간-온도 중첩이론을 적용한 아스팔트 바인더의 점소성 구성 모형 (A Viscoplastic Constitutive Model Based on Overstress Concept with Time-Temperature Superposition Principle)

  • 윤태영;엄병식;유평준;김연복
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.75-83
    • /
    • 2012
  • PURPOSES: Suggestion of asphalt binder constitutive model based on time-temperature superposition principle and overstress concept in order to describe behavior of asphalt binders. METHODS: A series of temperature sweep tests and multiple stress creep and recovery(MSCR) tests are performed to verify the applicability of time-temperature superposition principle(t-Ts) and to develop viscoelastoplastic constitutive equation based on overstress concept. For the tests, temperature sweep tests at various high temperature and various frequency and MSCR test at $58^{\circ}C$, $64^{\circ}C$ $70^{\circ}C$, $76^{\circ}C$, and $82^{\circ}C$ are performed. From the temperature sweep tests, dynamic shear modulus mastercurve and time-temperature shift function are built and the shift function and MSCR at $58^{\circ}C$ are utilized to determine model coefficients of VBO model. RESULTS: It is observed that the time-temperature shift function built at low strain level of 0.1% is applicable not only to 1.0% strain level temperature sweep test but also maximum 500,00% strain level of MSCR test. As well, the modified VBO model shows perfect prediction on MSCR measured strain at the other temperatures. CONCLUSIONS: The Time-temperature superposition principle stands hold from very low strain level to very high strain level and that the modified VBO model can be applicable for various range of strain and temperature region to predict elastic, viscoelastic, and viscoplastic strain of asphalt binders.

MMA 개질 폴리머 콘크리트의 인장증강 효과 (Tension Stiffening Effects of MMA-Modified Polymer Concrete)

  • 연규석;권택정;정중호;김성기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

포화(飽和)모래의 전단강도특성(剪斷强度特性)에 관(關)한 실험적(實驗的) 연구(研究) -대구지역(大邱地域) 낙동강(洛東江) 모래에 대해- (Experimental Study on the Shear Strength Characteristics of the Saturated Sand)

  • 김영수;서인식;김병탁
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1417-1431
    • /
    • 1994
  • 본 연구에서 삼축압축시험기를 이용하여 낙동강유역 모래에 대한 상대밀도, 전단변형어속도, 구속압력의 변화에 의한 전단강도 특성을 고찰하였다. 그리고 Lade 모델과 수정 Lade 모델의 결과는 실험에 의하여 비교하였다. 전단변형제어속도, 상대밀도 그리고 구속압력변화에 의한 결과를 요약하면 다음과 같다. 1) 낙동강유역의 모래에 대해 Coulomb의 식을 이용할 수 있는 응력의 한계는 변형제어속도가 0.08%/min일 때 120~200 kpa이고 0.5%/min일 때 120~150 kpa의 범위로 고찰되었다. 이들 한계범위들은 석회질 모래나 양입도의 석영질 모래에 비해 적게 나타났다. 2) 변형제어속도와 상대밀도 모두가 Lade 모델과 수정 Lade 모델에 필요한 매개변수에 많은 영향을 미친다. 따라서 현장에서는 하중조건과 지반조건을 정확히 파악하여 적절한 매개변수를 사용하는 것이 중요하다. 3) 변형제어속도와 상대밀도의 변화에 따른 구성모델식에 의한 파괴시 주응력비는 전반적으로 변형제어속도에는 큰 영향을 받지 않으나, 상대밀도와 구속압력이 구성 모델식의 결과에 영향을 미치는 것으로 나타났다. 따라서 낙동강유역의 모래에 대한 응력-변형거동의 정확한 예측을 위해서는 다양한 조건에 대한 연구가 필요할 것으로 판단된다. 4) Lade 모델과 수정 Lade 모델에서 결정된 파괴시 주응력비와 파괴포락선의 내부마찰각을 실측치와 비교한 결과, 본 연구에서 사용된 구속응력 범위내에서는 Lade 모델이 수정 Lade 모델보다 평균적으로 실측치에 더 근접함을 보여 주었다.

  • PDF

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링 (Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger)

  • 김우곤;윤송남;김용완
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.

용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가 (Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint)

  • 한정우;한승호;신병천;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

AZ31B 마그네슘 합금 판재의 구성식 개발 (Constitutive Modeling of AZ31B Magnesium Alloys)

  • 이명규;정관수;김헌영
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

유안요소법에 의한 식중응력의 해석 (An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading)

  • 박병기;이문수;이진수
    • 한국지반공학회지:지반
    • /
    • 제1권1호
    • /
    • pp.73-84
    • /
    • 1985
  • 본 연구에거는 유한요소법에 의해서 제상하중을 받고 있는 연약지반의 응력분포와 변위를 규명하 였다. 응력에는 체적응력, 간극수압, 연직응력, 수평응력, 전단응력이 포함된다. 유한요소기법으로서 Christian-Boehmer방법을 택하였으며 진배수 및 비배수조건에서 일반탄성model과 참정 Cam-clay model을 지배방정으로 선정하였다. 그 결과는 다음과 같다. 1. 체적응력은 간극수압과 거의 일치한다. 이는 비배수조건에서 전응력이 간극수탄과 같다는 것 을 의미한다. 2. 연직응력은 배수 및 비배수표건이라 구성식의 model에 관계없이 같은 갈을 나타런다. 3. 수평응력은 배수조건과는 무관하지만 구함식의 model에 따라서 다른 값으로 나타난다. 4. 전단응력은 배수조건 및 구성식의 model model에 따라 다른 값이 된다. 수정 Cam-clay에 의한 해석치가 가장 크게 된다. 5. 변위 Vector의 방향은 하중이 증가하는 동안 성토법면근방에서 외향으로 향한다. 6. 변위의 크기는 수정 Cam-clay에 의한 해석이 탄성 model의 2배가 된다.

  • PDF