• Title/Summary/Keyword: modified pseudo-dynamic analysis

Search Result 12, Processing Time 0.034 seconds

A Study of seismic analysis method of urban rail transit's underground concrete structure (도시철도 지중 콘크리트 구조물의 내진해석법 적용에 관한 연구)

  • Lee, Hee-Young;Lee, Dong-Ho;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1159-1164
    • /
    • 2005
  • Seismic analysis methods in use on ground structure are equivalentstatic analysis, response-displacement method and dynamic analysis etc. Equivalentstatic analysis does not considerdynamic effect, and dynamic analysis process is very complex. then 'Urbanrail transit earthquake-resistance design standard (2005.06)' is persuading that analyze by response displacement method that consider enough dynamic effect of ground structure statically. But, It is very complex and difficult to apply response-displacement method in the field. So, modified equivalentstatic analysis or pseudo static analysis that is easy to apply in the field and have rationality of design is practically used. In this study, I try to prescribe the applicable scale of structure and static analysis that have calculative effectiveness about response-displacement method by comparing and analyzing the result of each analysis method according to the scale of urban rail transit' box type concrete structure and by performing seismic analysis that apply modified equivalentstatic analysis, pseudo static analysis and response-displacement method changing the kind of ground, depth of bedrock, size of structure.

  • PDF

The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests (진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교)

  • Hwang, Seong-Choon;Oh, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF

Evaluation of the Application and Analysis Method at Seismic Design of Dam (댐의 내진설계시 해석방법과 그 적용성 평가)

  • Hwang, Seong-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4239-4249
    • /
    • 2011
  • In the country with frequent earthquakes like Japan, resistance to earthquake is assessed on the basis that Dam body's Face slab is destroyed by concentrated stress. In our country this kind of modeling and analysis is not yet definitely established. This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo-static analysis and frequency domain response analysis, time domain history analysis of dinamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

Dynamic Evaluation of Bridge Mounted Structures (교량상부에 부착된 구조물의 동적거동해석)

  • Kim, Dong-Joo;Lee, Wan-Soo;Yang, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.324-327
    • /
    • 2011
  • The design requirement for ground mounted sign structures are fairly well defined in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and consists of applying an equivalent pseudo-dynamic loading to account for the dynamic effects of wind loads and ignores the dynamic effect due to moving vehicle loads. This design approach, however, should not be applied to the design of bridge mounted sign structures because ignoring the dynamic effects of the moving vehicle loads may produce non-conservative results, since the stiffness of the bridge structure can greatly influence the behavior. Not enough information is available in the literatures which provide guide lines to include the influence of moving vehicles in the design of the bridge mounted sign structures. This paper describes a theoretical methodology, Bridge-Vehicle Interaction Element, which can be utilized to account for the dynamic effect of moving vehicles. A case study is also included where this methodology was successfully applied. It was concluded that the bridge-vehicle interaction finite element developed can provide a more accurate representation of the behavior of bridge mounted sign structures. The result of these analysis enabled development of simple and effective retrofitting scheme for the existing support system of bridge-mounted-structure.

  • PDF

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

Development of Novel Method of Seismic Slope Stability Analysis (신(新) 유사정적 사면안정해석 기법 개발)

  • Yun, Seung;Park, Duhee;Lee, Seungho;Hwang, Youngchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops a new hybrid pseudostatic method that links the modified one-dimensional seismic site response analysis and the pseudostatic algorithm. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses were performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure were compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match. The calculated profiles are used to perform pseudostatic analysis. The results show that use of peak or a fraction of acceleration at the surface can seriously underestimate or overestimate the factor of safety, and that the proposed procedure significantly enhances the reliability of a standard procedure.

  • PDF

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.