• Title/Summary/Keyword: modified parity vector

Search Result 3, Processing Time 0.017 seconds

Sequential Fault Detection and Isolation for Redundant Inertial Sensor Systems with Uncertain Factors

  • Kim, Jeong-Yong;Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2594-2599
    • /
    • 2003
  • We consider some problems of the Modified SPRT(Sequential Probability Ratio Test) method for fault detection and isolation of inertial redundant sensor systems and propose an Advanced SPRT method to solve the problems of the Modified SPRT method. One problem of the Modified SPRT method to apply to inertial sensor system comes from the effect of inertial sensor errors such as misalignment, scale factor error and sensor bias in the parity vector, which make the Modified SPRT method hard to be applicable. The other problem is due to the correlation of parity vector components which may induce false alarm. We use a two-stage Kalman filter to remove effects of the inertial sensor errors and propose the modified parity vector and the controlled parity vector which removes the effect of correlation of parity vector components. The Advanced SPRT method is derived form the modified parity vector and the controlled parity vector. Some simulation results are presented to show the usefulness of the Advanced SPRT method to redundant inertial sensor systems.

  • PDF

여분의 관성센서 시스템을 위한 순차적 고장 검출 및 분리기법

  • Kim, Jeong-Yong;Cho, Hyun-Chul;Kim, Sang-Won;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.179-187
    • /
    • 2004
  • We consider some problems of the Modified SPRT(Sequential Probability Ratio Test) method for fault detection and isolation of inertial redundant sensor systems and propose an Advanced SPRT method which solves the problems of the Modified SPRT method. The problems of the Modified SPRT method to apply to inertial sensor system come from the effect of inertial sensor errors and the correlation of parity vector components. We use a two-stage Kalman filter to remove effects of the inertial sensor errors and propose the modified parity vector and the controlled parity vector which reduces the effect of correlation of parity vector components. The Advanced SPRT method is derived form the modified parity vector and the controlled party vector. Some simulation results are presented to show the usefulness of the Advanced SPRT method to redundant inertial sensor systems.

  • PDF

Fault Detection and Isolation Performance Analysis of Modified SPRT with respect to Inertial Sensor Errors

  • Kim, Jeong-Yong;Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.3-32
    • /
    • 2002
  • We analyze the effect of main inertial sensor errors such as, misalignment, scale factor error and bias on the performance of modified sequential probability ratio test (SPRT) for sequential fault detection and isolation (FDI). The inertial sensor errors cause the modified SPRT method to give false alarm. We use a two-stage KF to obtain a modified parity vector with which the inertial sensor errors can be removed and thus modified SPRT method can be used regardless of inertial sensor errors.

  • PDF